Abstract: Can chemisorption bonding shifts be separated
from relaxation-energy shifts in photoelectron spectroscopy?
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Consider the surface-molecule limit of chemisorption in
which an adatom orbital with eigenvalue ¢, forms a
bond with substrate orbitals of energy €. The molecular
orbital (M) eigenvalues are

e*:{ea+esi [4V2+(€a-€s)2]1/2}/2, (1)
where the hopping integral V' causes a chemical bond-
ing shift. In a photoemission experiment from such a
MO, the electrons ejected from the bond are observed
(upon subtraction of the photon energy) at the energy

¢, (obs)=e, + b (rel), (2)
where Oe.(rel) is the relaxation energy due to hole
creation in the MO state.! The problem to be addressed
is how to determine a value of V, given €(obs).

Demuth and Eastman® have analyzed photoemission
spectra from CO chemisorbed on Ni under the assump-
tion that the relaxation shift of the nonbonding o
orbitals on CO is identical to the relaxation shift of the
bonding 7 orbitals and (implicitly) that the relaxation
shifts of the Ni d orbitals are equal to the nonbonding
(clean surface) value. In this approximation scheme,
the neglect of the MO charge-cloud distortion due to
bonding-charge pileup between the a and s centers is
compensated for by allowing each molecular constitu-
ent to have its full uncoupled relaxation shift.

To check out the independent atom relaxation energy
approximation, the relaxation (or polarization) energy
shift for hole creation in a diatomic hydrogen molecule
embedded in an electron gas has been calculated® and
the results indicate that the relaxation energy differs by
only 2%-9% (depending on electron-gas density in the
range 5% r, *2) from the uncoupled atom value. As-
suming that this difference can be neglected, we can
then replace €.(obs) of Eq. (2) by e, of Eq. (1) with
€,—e€, + O¢, (rel)=¢, (obs)
and

€,—€, + ¢, (rel) =€, (obs)

where 8¢, (rel) is now the extra-atomic or polarization self-
energy.»*5 Within this scheme, the observed MO energy
is related to the known quantities €; (obs) (from clean sur-
face experiments) and e, (from gas-phase experiments) and
the unknown quantities &€, (rel) and V by

€,(obs) = (e (obs) + € _+ 8¢ (rel) +{4V? +[e (obs)

-, = 6€a(rel)]}1/2)/2. (3)
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Rather than calculate V', we calculate the polarization
energy &€, (rel) for a hole created in an atomic orbital
state ¢, (r) on the adatom located a distance s from
the effective image plane of the surface. Following
Hedin* and Hodges,” the polarization energy is given
by:

be (rel) = fd3rd3r'¢:(r)2(r, e ) (') (4a)
with the nonlocal self-energy
e [ aweyir, vrse - o) i) (4b)
3 (A 2 WG T, ' S q w 671(1',(_0) )

the @ component of the potential induced at r’ by a
charge at

SVina(r’, w) _

on(r, w)
1—cglw) explig: (r;—r)]lexpl—gl(l 2] +12'1)]

e’ 2
q 1+ € (w) q
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(4c)

with €, (w) the electron-gas dielectric function, r; and
q lying in the plane of the surface, and G, the hole
Green’s function.

Taking €, (co)zl—wf, /@* with o, the bulk plasmon

frequency and neglecting dynamic and van der Waals
polarization, the system of Egs.(4) can be reduced to®

o2 b 2
¢ (rel) == | dq dzexp(—q‘z!)p(q;z) ,

where

(5a)

plg, 2)= [er,,|<z>a(r,,;z)‘2exp(iq-r”). (5b}

For illustrative purposes, take ¢, to be a single, optimal
Gaussian,’

cba(r):(Zoz/w)g/“eXp(—a'rQ), (6a)

so from Eq. (5b),

pla; 2) = (2a/m)/? expl— 20 (2 — 5)%] exp(— ¢*/80), (6b)

where now, the z origin is taken at the image plane,
and the atom— surface separation is s. Equations (5)
and (6) can be reduced® to the single quadrature:

2 [ _
=5 [ ezt
2
+ e“l:l - erf(%)]} ,
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with 0.5 8¢, (rel)/e,, <1 for atomic scale values of
s and with €, =e?/4s, the image potential shift.® As
a parenthetical check, we note that the relaxation shifts
experienced ty the S5p levels of Xe physisorbed on W,
as reported by Waclawski and Herbst,” fall within this
range.

Since a well defined procedure for calculating the
adatom relaxation energy shifts [Eqgs. (4)—(7)] has been
given, the only remaining unknown quantity in Eq. (3)
is V and thus we can conclude that (within the
approximation scheme discussed here) chemisorption
bonding shifts can be separated from relaxation energy
shifts in photoelectron spectroscopy.
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