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We have calculated the energy distribution of secondary electrons observed in core-level
XPS or core-level synchrotron photoemission experiments on Al. The secondary electrons
are produced when the photoexcited primary electrons scatter inelastically from the valence
electrons via the mechanisms of bulk and surface plasmon production and electron—hole
production. The scattering cross sections for these events are determined from the Lindhard
dielectric function, although the plasmon dispersion and broadening are taken from
experimental measurements. Multiple scattering is taken into account by means of the
Wolff-Spencer—Fano integral equation for the electron-energy distribution. The calculated

results are compared to experiment.

PACS numbers: 79.60.Cn, 79.20.Hx, 71.45.Gm

I. INTRODUCTION

In ESCA (electron spectroscopy for chemical analysis) ex-
periments on solids, high-energy photons (of energy Aw) are
used to excite electrons from the core levels of the atoms
composing the crystal. Those photoelectrons which escape
from the solid are energy analyzed and in general a narrow
peak in the electron intensity is observed at an energy Aw
above the core level. This peak is referred to as the elastic line.
Also observed are inelastic lines, i.e., broader peaks at lower
energies corresponding to photoelectrons that have lost energy
by plasmon or electron-hole creation as they traveled to the
surface.

In this paper I develop a theory of the inelastic (or secon-
dary) spectrum of photoelectrons observed in ESCA experi-
ments from core levels in nearly free-electron materials.
Numerical application is made to the case of ESCA from the
2p core level of Al The theory includes the effects of scat-
tering by bulk and surface-plasmon production, as well as
scattering by electron-hole creation. The dispersion and
broadening of the plasmons is taken into account. Multiple
scattering is included in the theory by the use of a transport
equation. Previous workers!-2 have neglected electron-hole
scattering as well as plasmon dispersion and broadening, all
of which are important in determining the inelastic energy
spectrum.

The calculation is divided into two parts. In Sec. II the en-
ergy distribution of the secondaries in the bulk is determined,
and in Sec. III the internal bulk distribution is related to the
distribution outside the solid, i.e., the observed distribution.
The internal and external distributions differ because of in-
elastic scattering by surface plasmons. In Sec. IV the results
of a calculation for the inelastic ESCA distribution from the
2p core level in Al is compared to experiment.

A more detailed version of this work will be published in
the Physical Review.
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Il. INTERNAL ELECTRON DISTRIBUTION

Following Wolff3 the equation for the number of electrons
with energy E per unit volume, N(E,f,¢), traveling in a di-
rection (8,¢) with respect to the surface normal is

{o(E)/I(E))N(E,0,¢)
+ N(E,0,¢)fdYP(E,0',¢";E,0,¢)
= nO(E’0’¢) + fdQ/N(E’O,’¢/)P(E’0/)¢/;E’0’¢)

n J‘ " dE’ fAUN(E',0',¢)P(E",0',¢":E,0,8), (1)
E

where no(E,6,¢) is the rate at which electrons are photoexcited
into the state (E,0,¢) and P(E,8,¢;E’,6",¢’) is the probability
per unit time that an electron scatters from the state (E,8,¢)
to (E’,0/,¢"). The Auger process in which an electron scatters
from (E.f,¢) to say (E”,0”,¢”) while a valence electron is
excited to (E’,#',¢") can be neglected because E is large
(greater than 200 eV.). v(E) is the velocity of an electron with
energy E and the electron mean free path for inelastic scat-
tering, [(E), is given by

1 _ L fEdE’ f dQP(E6,$:E0,4"), (2)

KE) o(E) Ju A
where p is the Fermi energy of the solid.

The scattering probability P peaks in the forward direction

and consequently Eq. (1) gives

&f(’é)—)’ﬁ’—) = no(E.0,¢) + j; dE'®(E’,0,4)(E",E)
(3a)
where
®(E,0,¢) = o(E)N(E,0,¢) (3b)
and
(B E) = - (:3 S SAXPEISEND). 3
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®(E,0,¢) is the flux of electrons traveling in the direction (6,¢)
and 7(E’,E) is the probability per unit path length that an
electron scatters from the state E to the state E’. It is clear from
Eq. (8a) that the assumption of forward scattering has the
consequence that elastic scattering determined by
P(E#,¢";E8,¢) in Eq. (1) does not affect the electron distri-
bution ®(E,0,¢).
The rate at which electrons are photoexcited is given by

no(E,0") = [1 + (8/2)(% sin®0" — 1)Ino(E), (4)

where ¢’ is the angle between the incident photons and the
path of the photo-excited electron. Over the range of energies
of interest to us 8 can be regarded as independent of E. 8 is
a number of order one and its explicit value depends on
whether the excitation takes place from s, p, or d core levels.
If the photon beam is at an angle ¥ with respect to the normal
to the surface then n is given by

no(E,0,6) = f(0,6)n0(E) (5)
= {1 + (8/4)(1 — 3[sinf siny cos¢ + cos cosy|2)iny(E),

where (6,¢) are measured with respect to a coordinate system
with the z axis normal to the surface and x axis in the plane
determined by the surface normal and the direction of the
incident photons. Equations (3a) and (5) imply that

®(E,0,¢) = B(E)f(0.¢),
where f is given by Eq. (5). Equation (3a) then becomes

®(E) ®

22— no(E) + f dE'®(E")r(E',E).

IE) olE) . (E")7(E".E)

Equation (7) can be solved numerically given 7(E’,E). It takes

proper account of the multiple scattering of the electrons.
The scattering probability per unit path length for a free-

electron-like metal is given by*

(raoE)~! f d—;—lm <m) (8a)

where ag is the Bohr radius, ¢ = q/ks is the momentum
transfer g relative to the Fermi momentum ky, and ¢ is the
Lindard dielectric function. The integral in Eq. (8) is carried
out over values of g that satisfy

E-E +q)/2gVE <1

(6)

(7)

r(E.E’) =

(8b)

There are two regions in g space which contribute to the in-
tegral in (8a): region (a), the region in which Im e(qg,.E — E’)
is nonzero, corresponds to inelastic scattering by creation of
electron-hole pairs; and region (b), in which Im ¢(q,E — E’)
= 0 and Re ¢(q,E — E’) = 0 so that

Im(e)

1
fm (e(q,E — E’)) " [Re()? + [Im(e)]2
— —xd(Re ¢(q,E — E’)).

(9a)

Region (b) corresponds to inelastic scattering due to plasmon
creation. In order to include the effects of the broadening of
the plasmons on 7(E,E’) we use

1 W0 27w
I = P Tq 9%
" <e(q,w)> (@ = wg2)? + (140)? (9b)
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in Eq. (8a) when q lies in region (b). In Eq. (9) w, is the plasma
frequence of the electron gas, w, is the experimentally mea-
sured® plasmon-dispersion relation, and 7, is determined from
the experimentally measured® broadening of the plasmons.

The distribution of electrons in the solid can now be de-
termined from a numerical solution of Eq. (7).

lll. EXTERNAL ELECTRON DISTRIBUTION

The distribution of electrons escaping from the solid differs
from the internal distribution primarily because of inelastic
electron scattering by surface plasmons. The energies of in-
terest to us are sufficiently large that the electron escape
probability is unity. The inelastic scattering probability due
to the surface can be deduced as follows. The self-energy of
an electron with energy E due to the presence of the surface
is given approximately by®

2(r,r;E) = (ih/27) £ dwgo(r,r;E — w)
d%q, /1 — e\ 2me?
X
f (27!')2 <1 + 6) qy

X exP“au ° (§|| - 5\\’) - q“(lzl + IZ,I ), (10a)

where g is the free-electron Green function, g, is a momen-
tum vector parallel to the surface and’

P = 4 ) _—d—qé_
€ e(qif’w) T ‘f:m q2€(q,w)‘

From Eq. (10) it follows that the imaginary part of the self
energy of an electron with momentum k and energy ¢ =
(h2/2m)k2 is
ImZy o = (4e%/2L7?) fdw fdq(q,/q*)

Im[1 + €(q,w)] ™! X 6(exx — ek—q — hw)

(10b)

(11)

The average number of plasmons created when an electron
travels from inside the solid through the surface is

Qk,sk = L/Uz (t),

where L is the distance traveled by the electron, v, is its ve-
locity normal to the surface and (¢) is the average time be-
tween scattering events

(12a)

1/{t) = (2/h) ImZy . (12b)
Use of Eq. (11) in Eq. (12) yields
Qi = Qlex:b,¢) = fdwQ(er,w,0,0), (13a)

where k is at an angle (6,¢) to the surface normal and

_ 2 dq o
E 0 == -
OEG08) = s f = {Tdo
@ <2GE — g2

X [1 — (sinf sind cos¢ + cosf cosd)2]*/2 Im[1 + €], (13b)
where & = 6(q,) is given by
cosd = (@ + /2§ VE. (13¢)

Q(E,,0,¢) is the average number of collisions made by an
electron of energy E moving in a direction (,¢) going from
inside the metal to outside in which it loses energy @ = w/p.
Because the surface plasmon scattering takes place very near
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the surface the quantity, Q is independent of where in the
solid the photoelectron was excited. In the limit of very high
energies and § = 0.Eq. (13a) gives Q = (e2/Av)(x/2) in
agreement with Ritchie.®

The relationship between the distribution of electrons
outside the metal to that inside the metal (and determined in
Sec. II) is

NOllt(E’0>¢) = NIH(E’a’QS)[l - PT(E90,¢)]
- f ’ f dUN(EVS)PE0.6'E0.6) (14)
E

where P1(E,0,¢) is the probability that an electron is scattered
out of the state (E,8,¢) by surface plasmons and P(E’,¢’,¢’;
E.0,¢) is the probability that an electron is scattered from
(E".00,¢') to (E 0,¢). Py is related to P by the equation

E
Pr(E,0,0) = f dE’ f dVP(E,6,:E,0',¢"). (15)

For high energies the scattering is primarily forward and
Eq. (14) becomes

¢Ollt(E>0,¢) = <bln(E’0a¢)[l - PT(Ea0?¢)]
+ f " dE"o(E) 18y (E',0,8)P(E"E0,0), (16)
E

where P(E’,E,0,¢) is the probability that an electron in the
state (E’,0,¢) is scattered to a state of energy E. For high
energies and § < m/4 one finds P,Pt <« 1 and consequent-
ly

P(E"E;0,¢) ~ Q(E'.E’ — E,0,¢)

PT(E,9>¢) & Q(E>0’¢):

where Q is given by Eq. (13).

From Egs. (16) and (13) we see that the distribution of flux
outside the metal is determined from that inside the metal
once ¢, as specified by Eq. (10b), is known. We assume that
Im(1 + ¢ (q),w)] ™

= Yoy /[(w? = o2 )2+ (wrg B, (18)

(17a)
(17b)

where w; is the surface plasmon frequency at ¢ = 0 and w,
and 74, are determined by the experimentally measured
values of the surface plasmon dispersion and broadening,

The theory of Secs. II and III predicts the inelastic loss
spectrum given the direction of incident photons, the col-
lection angles or angles of the detector, and the shape of the
elastic line, i.e. the source function.

IV. NUMERICAL RESULTS

I now use the theory of Secs. II and III to calculate the in-
elastic loss observed in ESCA from the 2p core level of Al. The
data was supplied by Reed McFeely.1® We only consider
energies within about 35 eV of the elastic peak because the
2s elastic peak appears 45 eV below the 2p peak and interferes
with the 2p spectrum.

The input needed from experiment is (a) the observed
elastic peak, (b) the angle of the detector with respect to the
surface normal, which determines the strength of the elec-
tron-surface-plasmon coupling, (c) the bulk plasmon dis-
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= experiment

-=—== = theory

7 e — 125

FIG. 1. The solid line represents the experimental data of McFeeley for the
2p ESCA spectrum from Al Intensity in arbitrary units is plotted versus
energy in units of ¢; = 10.85 eV. The dashed curve represents the results of
the theory.

persion and broadening, and (d) the surface plasmon disper-
sion and broadening. The observed peak is of course obtained
from McFeely’s data. For convenience I have fitted the ob-
served peak to a Lorentzian of the same half-width and
height. This results in an over estimate in the area under the
peak of about 10%-15%. The angle of the detector with re-
spect to the surface normal was about 52°. The bulk-plasmon
dispersion is adequately predicted by the Lindhard dielectric
function. L have used r, = 2.14, the value for which the plas-
mon energy is 15.0 eV. The plasmon broadening at g = 0 is
obtained from optical experiments to be 1 eV, full width at
half maximum. The dependence of the broadening on wave
number ¢ is obtained from electron-transmission experi-
ments.!!-12 The surface plasmon broadening and dispersion
are obtained from inelastic LEED.13.14 The g = 0 values are
10.3 eV for the surface plasmon energy and 1.5 eV. for the
broadening,

The results of the calculation are shown in Fig. 1. The
agreement between theory and experiment is very good and
seems to rule out any substantial contribution from intrinsic
plasmons (which were not included in the calculation).
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