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In many scattering experiments, the quantity of most direct physical interest is a measure of the
difference between two closely related scattering signals, each generated by a Poisson scattering
process. This difference is often expressed in terms of an asymmetry statistic, that is, the
difference normalized to the sum of the two signals, corrected for an additive background
contribution. Typically, a propagation of errors approach is used to compute confidence
intervals for asymmetry. However, these confidence intervals are not reliable in general. In this
work, generally accurate confidence intervals for asymmetry are obtained using a parametric
bootstrap approach. Based on the observed data, data are simulated using a Monte Carlo
resampling scheme. The resampled data sets satisfy a constraint that ensures| that

background-corrected count rates are not negative.

I. INTRODUCTION

In many areas of research, asymmetry statistics, that
is, the normalized difference between two quantities, are of
direct physical interest. For example, in atomic collision
physics, asymmetry statistics computed from the scattering
of spin-polarized electrons from atoms carry information
about atomic structure.! In materials science studies, maps
of magnetic microstructure are based on the polarization of
secondary electrons emitted from the material after it is
bombarded by an energetic beam of electrons.? To estimate
these polarizations, asymmetry statistics are computed.

Many of the experiments in which asymmetries are of
interest involve the counting of electrons or other particles.
Generally, streams of pulses (assumed to be Poisson dis-
tributed) are counted in two experiments, one for each
orientation of the spins in the system relative to some
quantization axis. The number of counts measured in each
experiment is associated with an intensity for each of the
two spin orientations. The asymmetry is estimated by tak-
ing the ratio of the difference and the sum of the two
intensities. ,

The estimation of the asymmetry from observed data is
often complicated by an additive background signal. To
correct for background, the number of background counts
is measured in a third experiment and then subtracted
from each of the other two principal measurements. In this
paper, the case where measured background is less than or
equal to the other measurements is considered. That is, the
background-corrected observations are not negative. In a
later paper, the case where background corrected counts
are negative is treated.

In order to compute confidence intervals for the asym-
metry statistic, a propagation of errors (POE) approach’ is
typically used. The intensities are assumed to be normally
distributed with a standard deviation equal to the square
root of the number of total counts detected. These standard
deviations are propagated through the expression for the
asymmetry in the standard way. Though used extensively,
this POE approach can fail dramatically in some situa-
tions. For example, when the background signal is too
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close to the other signals, or if one of the two measured
signals is very small, unreasonabl:l results are obtained.
In this work, uncertainty intervals for the asymmetry
statistic are computed using a variation of the parametric
bootstrap4 approach. In this approach, data are simulated
using a Monte Carlo resampling scheme. The counts mea-
sured are modeled as independent | realizations of Poisson
processes with different rate parameters. Based on this
parametric assumption, bootstrapped replications of the
observed data are simulated. To ensure physically mean-
ingful results, the simulated data satisfy a constraint that
the background not exceed either of the two principal sig-
nals. For each simulated data set, an asymmetry statistic is
computed. Based on the histogram|of asymmetry statistics
computed from the simulated data, lower and upper end
points of an approximate 95% confidence interval are com-
puted. For a variety of cases, the computed confidence
intervals were generally accurate. The disagreement be-
tween the bootstrap and POE approaches becomes more
dramatic as the background signal |gets close to one of the
other signals.
In this paper, the estimator of scattering asymmetry is
first defined. For a high-background example, it is shown
that the POE approach fails to g:ﬁe a meaningful uncer-

tainty interval. A bootstrap uncertainty interval is defined
and compared to the POE approach for various examples.

Il. ASYMMETRY STATISTIC

|

Suppose that the number of sd;attering events for two
different scenarios are measured in|two independent exper-
iments. Further, assume that each experiment lasts the
same amount of time ¢. This assumption can be relaxed
without loss of generality. The first observation N, can be
expressed as the sum of two unobservable quantities as
follows:

Ny=N}t+Ni,- | (1)

Above, N¥ represents what woulch have been observed if
there had been no background. The number of counts due
to the background is NG ;. The superscript star indicates

0034-6748/93/64(7)/1888/7/$6.00 | 1888




that these quantities are unobservable. The terms on the
right-hand side of Eq. (1) are realizations of Poisson pro-
cesses with parameters A,¢ and Aggt. The second measure-
ment is expressed as

Ny=N$+Nis,, (2)

where two terms on the right side of Eq. (2) are indepen-
dent realizations of Poisson processes with parameters A,
and Aggt. The goal is to estimate the asymmetry term
=4,
T Aty )

Note that the asymmetry R lies between —1 and +1.
Hence, the end points of any confidence interval for asym-
metry should also lie between —1 and -+ 1, inclusive.

Assume that the background is measured in a third
independent experiment which also lasts time . Further,
assume that the experimental conditions for the back-
ground measurement are the same as for the other exper-
iments. Let the number of detected background counts be
Nyg,3. This measurement is modeled as a realization of a
Poisson process with parameter Aggz. With this third mea-
surement, a background-corrected estimate of the asymme-
try is

(N1—Ngg3) —(N;—=Npg3) ~ Ni—N,
(Ny,—Npg,;3) + (Ny3—Ngg 3) —.N1+N2—2NBG,E‘;)

R=

The focus of this paper is on confidence intervals for asym-
metry.

Here, it is assumed that N, and N, are not less than
Npg,3; that is, background-corrected counts are not nega-
tive. In a following paper, the case where background-
corrected counts are negative is treated.

As a caveat, because of dead-time effects, real data are
not exactly Poisson. In this work, dead-time effects are
assumed to be negligible. However, if count rates were high
enough so that that dead-time effects were significant, and
the duration of the dead time was known, the bootstrap
approach could be modified to simulate non-Poisson data
similar to the observed data. This is not pursued here.

Next, the failure of the POE method is demonstrated
for a particular case.

lil. PROPAGATION OF ERRORS
A. Method

In the POE approach, the background-corrected ratio
is first written as

R=(x—y)/(x+y—22), (3)

where x,y,z represent N{,N,,Npg 3. Based on a first-order

Taylor Series expansion of R in terms of x, y, and z, the
variance of R is approximated as

, (R \* (AR \* (3R 2
Uﬁ:(-g;dx) +(3_ya”) +(EUZ) . (6)
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i
To get this approximation for aLhe variance, the statistical
fluctuations in x, y, and z are assumed to be independent.
Because the three measured quantities are Poisson random
variables, the variance of each i;destimated by its observed

value. For instance, ai is equated to x. Thus,

|
af&zm (x(y—Z)%2+y(z—x)2+z(x—y)z)-

x
(7

The 95% confidence interval is then obtained by treating R
as an approximate Gaussian random variable. Hence, the
confidence interval for R is (R~1.960 3z ,R+1.960 3).

For many experiments, the|above scheme for comput-
ing a confidence interval may He a reasonable approxima-
tion. However, for experiments where statistical fluctua-
tions in the additive background signal are proportionally
large compared to the other signals, the above procedure is
not appropriate, in general. Next, a 95% POE confidence
interval is computed for such an example.

B. Example

Suppose that (N},N;,Npg 3) = (460,420,400). For this
example, R=0.5, o 3=0.48, and the POE 95% confidence
interval is (—0.44,1.44). Since ithe actual asymmetry can-
not exceed unity, this confidence interval is nonsensical.

The POE method failed for at least two reasons. First,
the assumption that the random variable is Gaussian is
inaccurate. Second, in the POE approach, statistical fluc-
tuations in the background which lead to negative
background-corrected counts are allowed. Hence, the end
points can be outside the allowed interval for true asym-
metry, which is (—1,+1). '

To clarify this point, note }ihat according to Eq. (1),
the measurement N, is the sum of the unobserved quanti-
ties NT and N3 ;. Thus, the observed quantity N, is cor-
related with the unobserved quantity Vg ;. For example,
if N1 is large, then so is N, because N, is never less than
N3G,1- In the POE method described here, this correlation
is not accounted for. Because of this oversight, the end
points of the POE confidence interval can lie outside the
region (—1,1). ‘

For the same example, (N;,N;,Npg;)=_(460,
420,400), we next show howito get a more reasonable
confidence interval using a parametric bootstrap method.
In the bootstrap method, the asymmetry statistic is not
modeled as a Gaussian random variable. Further, in the
bootstrap approach, simulated background-corrected
counts are not allowed to be nggative.

iV. BOOTSTRAP
A. Method

In the parametric bootstrap method* artificial replica-
tions of the observed data are simulated. The observations
are assumed to be realizations of Poisson processes. The
kth bootstrap replication of Ny, N,, and Npg 3 are drawn
from Poisson random number generators with means N,
N,, and Npg ;. Suppose that in all, Npoor bootstrap rep-
lications of the data are simulated. Each of the Ngoor sets
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of bootstrapped observations are simulated independently
of one another. However, each of the Nygqgr sets satisfies a
constraint that ensures that the statistical fluctuations in
the background and the other signals are physically mean-
ingful. The constraint is, for k=1, Ngogr,

N’ﬁG,3<N,f
and
Nl’§G,3<N’2c
and
2N’§G,3<N{‘+N’2‘. (8)

Simulated data which do not obey the above constraint are
discarded. Because of this constraint, the three simulated
signals are correlated with one another. For each simulated
data set that satisfies the above constraint, asymmetry is
computed using Eq. (4). Based on the histogram of the
asymmetry statistics computed from the simulated data, a
confidence interval is computed. Note that the above con-
straint is more powerful than the requirement that R be
between —1 and 1. For instance, if simulated background
is larger than both of the other signals, the denominator
term in Eq. (4) will be negative even though computed
asymmetry is between —1 and 1. The Eq. (8) constraint is
identically equivalent to jointly requiring that computed
asymmetry lies between — 1 and + 1, and that the denom-
inator term in the asymmetry estimate be positive.

According to the Percentile method,* the end points of
the 95% confidence interval are the 2.5% and 97.5% per-
centiles of the distribution of bootstrapped asymmetry sta-
tistics. However, in general, this approach does not yield
the most accurate confidence interval. There are standard
procedures for improving Percentile Method confidence in-
tervals. For instance, in the Bias Corrected (BC) method
of Efron’ the discrepancy between the median of the dis-
tribution of the bootstrapped statistic, relative to the value
of the observed statistic R, is used to correct the confidence
interval. In this paper, we compute a confidence interval
using this discrepancy. However, the way we use the dis-
crepancy to get the interval differs from the BC technique.

Some definitions must first be given before giving the
confidence interval. Let G be the empirical cumulative dis-
tribution function for the bootstrap replications of the sta-
tistic; G(p) is the fraction of bootstrapped statistics which
are less than or equal to y. Let ® be the cumulative distri-
bution function for the normal density, i.e.,

1 Z
@ =757 f e

We offer the following 95% confidence interval

(G- [D(—1.9642)1,G [®(1.96+2)]1), (10)

e~ "2dx. 9)

where ®(z,) =(§'(ﬁ). In general, to get a 1-2 a level con-
fidence interval, —1.96 and 1.96 would be replaced with
the appropriate z, and z,_, quantiles of the normal distri-
bution. However, in this work, only 95% confidence inter-
vals are computed.
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FIG. 1. Bootstrap distribution of asymmetry statistic for (N;,N;,Npg3)
== (460,420,400).

We call the interval defined in Eq (10) a constrained
bias-corrected (CBC) bootstrap confidence interval. The
bias correction term z, measures the difference between the
median of the bootstrapped values of the statistic and the
observed value of the statistic R. If ithe median of the dis-
tribution G is R, then 2,=0, and the 95% confidence i in-
terval end points are the 2.5% and 97.5% percentiles of G.
For the examples considered in this work, both the mean
and median of the bootstrap distribution were sometimes
far away from R when the backgrpund signal was high.
For the example (460,420,400), the median and mean of
the bootstrap distribution were 0.38 even though R was
0.5.

We note that in Efron’s BC method, the multiplicative
factor in front of z; is 2 rather than unity as in the CBC
interval. For the examples studied in this work, coverage
studies of the type which are described in a later section
showed that the 2z, correction yielded confidence intervals
which were too narrow. The method developed here is not
offered as the only way of proceddmg Other bootstrap
strategies such as the accelerated blas-correctlon (BC,)
method of Efron,® or iterative ‘bootstrap corrections
schemes®’ might yield better results. DiCiccio and Ro-
mano® review alternative ways of computing bootstrap
confidence intervals. Next, we study the accuracy of the
CBC method for the example for which the POE method
failed.

B. Example

Consider the same data as before, i.e., (N},N;,Npg,3)
= (460,420,400). In Fig. 1, a histogram of the boot-
strapped asymmetry statistics is plotted. This distribution
is clearly not Gaussian. According to the CBC method, the
959 confidence interval is (—0.11,1.00). This confidence
interval is far more reasonable than the nonsensical
(—0.44,1.44) interval obtained by POE. This CBC inter-
val is computed from a bootstrap simulation with 10 000
realizations. We note that for thfe example above, over
13 000 realizations were simulated in order to get 10 000

Scattering asymmetry statistics 1890




TABLE 1. 95% confidence intervals provided by bootstrap (CBC) and
POE methods. Data simulated with (A1+Apg A2+ Apg ABg)
= (460,420,400).

Realization N, N;  Nggs Bootstrap POE
a 449 424 395 (~0.37,095) (—0.47,1.08)
b 467 403 399 (0.35,1.00)  (-—0.53,2.31)
c 466 402 395 (0.27,1.00)  (~0.41,2.05)
d 460 418 386 (—0.12,095) (—0.25,1.04)
e 492 429 386 (0.02,092)  (—0.05,0.90)
f 49 401 400 (0.40,1.00) (—1.19,3.11)
g 453 425 422 (0.07,1.00) (—2.10,3.75)
h 469 450 407 (—0.44,0.86) (-—0.41,0.77)
i 474 430 387 (-0.10,091) (—0.17,0.85)
j 501 397 394 (0.56,1.00) (—0.02,1.91)

bootstrapped replications of the data which satisfied the
constraints in Eq. (8). It took 0.4 s of CPU time on a SUN
SPARCstation 1 to simulate these realizations.

To assess how well determined the CBC interval is, 30 °

different CBC intervals were obtained. Different intervals
were obtained by simulating data using different random
number seeds. The average value of the lower end point of
the 95% confidence intervals was —0.11. The standard
deviation of the 30 lower end points was 0.009. The upper

_end point was 1.0 in all 30 cases. Next, how well the CBC

interval “covers” the true value of the asymmetry is inves-
tigated.

C. Coverage

In the coverage study, the true Poisson parameters
were assumed to be (460,420,400). Based on this assump-
tion, 1000 plausible data sets were simulated. Each data set
satisfied the constraint that background not exceed either
of the other two simulated counts. Simulated data which
did not satisfy this constraint were discarded. For each of
the 1000 data sets, a 95% confidence interval was com-
puted using the CBC method. For each CBC confidence
interval, 10 000 bootstrap replications were simulated. In
Table I, CBC and POE confidence intervals are listed for
10 of the simulated data sets.

The true value of the asymmetry, which is 0.5, fell
within the bootstrap confidence intervals 919 out of 1000
possible times. The true value was less than the lower end
point of the bootstrap confidence interval 17 times. The
true value exceeded the upper end point of the bootstrap
confidence interval 64 times. Ideally, the true value of
asymmetry should be less than the lower end point 25 out
of 1000 times (2.5%). Similarly, the true value would ex-
ceed the upper end point 2.5% of the time. The observed
fractions are 1.7% and 6.4%. The difference between the
fraction of the time for which the true asymmetry was
greater than the upper end point (6.4%) and 2.5% is sta-
tistically significant since the statistical error is 0.7%.
Thus, it may be possible to improve upon the CBC method.
Such improvements are not explored here.
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FIG. 2. End-point differences for POE and CBC methods for
(Ny,N3,Npg,3) = (460,420,400).

D. CBC and POE

According to Table I, the disagreement between the
POE and CBC confidence intervals is greatest when the
background Npg ; is close to either N, or N,. One measure
of this closeness is

min(Ny,N;) —Ngg 3
Vmin(N;,N,;) +Ngg 3

The closeness measure is a normalized difference. Ideally,
the denominator term should be the square root of the sum
of the variance of the background counts plus the variance
of the minimum of other two! observed counts. We have
approximated the variance of the minimum of two Poisson
random variables as the minimum of the two random vari-
ables. \
In Fig. 2 the difference between the end points of the
POE and CBC 95% confidence interval are plotted against
the above measure of closeness for the 1000 data sets in the
coverage study for the case (460,420,400). The difference
between the POE and CBC upper end point is plotted as a
circle. The lower end-point difference is plotted as a dot.
Only differences in the range '(—0.5,40.5) are shown.
Note that the disagreement is worst for low closeness val-
ues. For closeness values less than unity, the POE intervals
are inflated; the upper POE end point is greater than the
upper CBC end point and the lower POE end point is less
than the lower CBC end point; At larger closeness values,
the upper end-point difference changes sign. For the exam-
ples studied here, the POE intervals are biased relative to
the CBC interval even for large closeness values. The bias
decreases as the closeness statitic increases.

close=

(10)

E. Other examples

The accuracy of the bootstrap confidence interval is
studied for other choices of tﬁe Poisson parameters. For
each choice of (1;+Apg,43+ApgAsg), 1000 data sets are
simulated as described earlier. For each simulated data set,
a bootstrap confidence interval (r;,r,) is computed. The
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TABLE II. Estimated coverage probabilities for Bootstrap confidence
intervals (r,,7,). Sample size is 1000.

R Ai+dse Ay+Ase Asg B(r>R) p(r,<R) p(r<R<r,)

0.1 21 19 10  0.045 0.042 0.913
0.1 160 140 50 0.030 0.030 0.940
0.2 15 10 0 0.025 0.011 0.964
0.2 30 20 0 0.026 0.023 0.951
0.5 15 5 0 0039 0.017 0.944
0.5 60 20 0 0032 0.017 0.951
0.5 80 40 20 0039 0.023 0.938
0.5 160 120 100  0.032 0.029 0.939
0.5 460 420 400 0.017 0.064 0.919
0.5 4600 4200 4000  0.030 0.018 0.952
0.5 1060 1020 1000  0.013 0.136 0.85t
0.9 95 5 0  0.051 0.007 0.942
0.9 190 10 0 0029 0.060 0.965
0.9 380 20 0 0025 0.021 0.954
0.9 210 30 20  0.033 0.024 0.943
0.9 240 60 50 0.008 0.029 0.963
0.9 2400 600 500  0.030 0.020 0.950

fraction of cases where the lower end point is greater than
true asymmetry is (7> R). The fraction of cases where
the upper end point is less than true asymmetry is
p(r,<R). The fraction of cases where true asymmetry
falls in the confidence interval is p(r<R<r,). These
coverage statistics are listed in Table II.

In general, coverage is best when the background is
farthest from the other signals. Note, that the coverage is
worst for the case (1060,1040,1000). For this case, all
three signals are very close. In Fig. 3, end-point differences
are plotted vs closeness statistics for some of the cases

0.5 T 3%

21_19_10
0.251

-0.251

05+ - . .

240_60_50

2 3
CLOSE

listed in Table II. The curves have somewhat similar
shapes; at low closeness values, theJrP;IOE intervals are in-
flated relative to the CBC interval. The magnitude of this
inflation depends on the values of the three signals
N{,Ny,Ngg,3. It is expected that for fixed N, and fixed
Nyg,3» the magnitude of the difference between the upper
end points diminishes as N, increases. At large closeness
values, the POE end points are slightly biased relative to
the CBC end points.

F. Asymptotic agreement

For any fixed set of Poisson rate parameters (A,
+Apg.Ay+Apg.Apg) We expect that the agreement be-
tween the POE and CBC method can be improved if the
duration of the experiment ¢ is increased. This is because
the numerator in the closeness statistic is O(¢) and denom-
inator is O(yt). Hence, the closeness statistic is O(Jt).
Thus, for fixed rate parameters, the closeness statistic in-
creases without limit as ¢ increases. Further, as ¢ gets large,
the distribution of the asymmetry is well approximated by
a Gaussian. This is so because of two reasons. First, for
large ¢ one can approximate the asymmetry statistic as the
ratio of two correlated Gaussians. Second, the asymptotic
distribution of the ratio of correlated Gaussians is also a
Gaussian.”'® Hence, one of the assumptions in the POE
method is asymptotically valid. Thus, according to this
logic, if one does a long enough experiment, the POE
method will be a valid approach. Next, we demonstrate the
asymptotic agreement for a particular example.

For the case where the data was (460 000, 420 000,
400 000), the CBC and POE 95% confidence intervals

0.57

460_420_400
0.25

-0.251

'0-5 e T ¥ T T

0.5

0.25

0257 -

0.5 T T T
2 3
CLOSE

FIG. 3. End-point differences for POE and CBC metheds vs closeness statistic.
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FIG. 4. Confidence intervals for POE and CBC methods for
(N1,N3,Npg3) = (124+x,x,0) x=1,2,...,12,

were almost the same. For this case, the closeness statistic
[Eq. (10)] equals 22.1. The POE 95% confidence interval
was (0.470,0.530). The CBC confidence interval was
(0.471,0.530). The statistical errors in determining the end
points of the CBC interval were small; the standard devi-
ations were 0.0006 and 0.0005. Also, a quantile-quantile

- plot indicated that the bootstrap distribution was well ap-

proximated by a Gaussian distribution.

G. No background

Now, we consider the case where there is no back-
ground signal. According to Table II, for cases where there

0.16 °

:;: - 12_X_(
0.041 SO
0 0 9 0904

-0.04
-0.08
-0.121
-0.16

0 2 4

XK o
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0033% 48 _X_Q
0.021 "o - =

001] °%min o o

2 .0.0..Q.
0 %“W‘
0.01

-0.02
-0.03
-0.04 T T T T T T T

0 6 12 18 24 30 36 42 48

X

was no background signal, the coverage of the CBC inter-
vals was better for cases where| ¥, and N, are larger. For
instance, coverage for (380,20,&) was better than coverage
for (95,5,0). In Fig. 4, CBC (solid) and POE (dashed)
confidence intervals are shown for the cases where
(N,N3,Npg 3) =(12,x,0), where x=1,2,3,..,,12. In each
bootstrap computation, 50 000 realizations were simulated.
For values of x which are less than 3, the upper end point
of the POE confidence interval exceeded unity. Note that
at the lowest values of x, the POE intervals differ most
from the CBC intervals. However, at larger values, the
differences are not dramatic. Similar results were observed
for the cases (24,x,0), (48,x,0), and (96,x,0). In Fig. 5,
the differences in the end points are plotted for these cases.
All the curves have similar shapes although the magnitude
of the difference in end points depends on N 1; as N, in-
creases, the difference between the two approaches de-
creases. In closing, for the case of no background, the dif-
ference between the bootstrap and POE approach is most
dramatic when both N, and N, are small.

V. DISCUSSION

Uncertainty intervals for background-corrected asym-
metry statistics were computed using both a Bootstrap and
a POE method. The bootstrapped replications of the ob-
served data satisfied the constraint that background not
exceed either of the two measured principal signals. The
bootstrap confidence intervals were corrected for bias using
a scheme based on the discrepancy between the observed
asymmetry statistic and the median of the bootstrapped
asymmetry statistics.

008 To
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FIG. 5. End-point differences for POE and CBC methods for various no background signal cases.
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For cases where the background is too close to either
principal signal, the POE method failed to give reasonable
results. The POE method failed for at least two reasons.
First, the assumption that the random variable is Gaussian
is inaccurate. Second, nonsensical fluctuations of the back-
ground were allowed. In contrast, the bootstrap method
yielded generally accurate results. In general, the accuracy
of the bootstrap method was best when the difference be-
tween the background and the other signals was greatest.

For cases where the background signal is close to the
principal signals, the POE approach differs most dramati-
cally from the bootstrap approach. A measure of this close-
ness was given. When there is no background signal, the
two approaches disagree most when one of the detected
principal signals is very small.

In the work considered here, the times of the three
experiments to measure N, N,, and N, are the same. For
experiments where the observation times for the three ex-
periments are not the same, all of the techniques developed
here still apply. Each of the relevant terms, e.g., N 1» would
be divided by the relevant observation times, e. g t, in the

1894 Rev. Scl. Instrum., Vol. 64, No. 7, July 1993

appropriate equations. Additionally, the methods devel-
oped here can also be applied to the case where measured
background exceeds one of other sign?s. For such cases,
the asymmetry computed from the data is nonsensical.
This case will be treated in a following paper.
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