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9. OPTICAL STATE-PREPARATION OF ATOMS

Jabez J. McClelland

Electron Physics Group
National Institute of Standards and Technology
Gaithersburg, Maryland

9.1 Introduction

In the study of a broad range of phenomena involving atoms, from collisions
to spectroscopy to reaction dynamics, an increasing need has developed for
probing ever deeper into the physical processes at work. The realization has
evolved over the decades that to quantitatively study atomic interaction phenom-
ena, it is necessary to experimentally resolve as many variables in the interaction
as possible. For example, it is not enough to study the average thermal reaction
rate of a collision-related process; instead, the process must be studied as a
function of relative velocity and scattering angle. Eventually, it has become clear
that the internal degrees of freedom of the atom play a crucial role, so these must
be experimentally controlled as well. As a result of this need, the use of optical
radiation, especially lasers, to control the internal states of atoms through optical
pumping has become increasingly popular in atomic physics experiments.

The purpose of this chapter is to provide some guidelines for the
experimentalist interested in performing a state-selected experiment using lasers.
As this is meant to be a practical guide, an attempt is made to be fairly
self-contained, quoting results from the literature as they are needed. Some
knowledge is necessarily assumed, however, in particular regarding atomic
structure and spectroscopic notation, and the fundamentals of the interaction
between atoms and electromagnetic fields. In addition, some familiarity with the
nature of quantum coherence will be useful.

Discussion in this chapter is limited to optical pumping in atomic beams, with
a strong slant toward collision experiments. A complete review of optical
pumping, as it is applied across atomic and molecular physics, would go far
beyond the scope of this work. There is a large amount of literature relating to
optical pumping in vapor cells, and also cooling and trapping of atoms, that there
is simply not enough space to discuss. The reader should be aware of the
crossovers with these other fields, though, because much can be learned from
parallel developments. In particular, an excellent resource is the review article by
Happer [1] on optical pumping in vapor cells.
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146 OPTICAL STATE-PREPARATION OF ATOMS

As a result of the emphasis on collision work, this chapter focuses mostly on
optical pumping process which selectively populate the magnetic sublevels of an
atom. This is because of the great amount of interest that exists in probing the
channels of a collision which are associated with alignment and orientation of the
target. By controlling the magnetic sublevel populations of the target one can, in
effect, control orientation and/or alignment, and hence conduct an experiment at
the most fundamental level of state selection.

Much of the discussion here is devoted to rate equation calculations and their
interpretation, rather than specific experimental arrangements. The reason for
this is that the experimental arrangement for a typical optical pumping experi-
ment is quite simple, consisting of an atom beam, a laser (often commercial), and
some fluorescence detection. The crucial aspect of doing a good job in optical
state-preparation lies in knowing the details of what is happening to the atoms as
they interact with the laser. A good understanding of the processes involved and
facility with modeling techniques are essential for this. The last section of this
chapter is intended as a resource of relevant data on a number of specific atoms,
in the hope that this will prove useful for the planning of experiments.

9.2 Basic Concepts

The two fundamental facts that make laser optical pumping possible are (a)
when an atom is exposed to electromagnetic radiation at a frequency near
resonance, transitions are induced between quantum states in the atom, and (b) if
an atom is in an excited state, it will decay by spontaneous emission to a lower
state. These phenomena lead to transfer of atomic population from one quantum
state of the atom to another. By carefully choosing the radiation frequency,
intensity and polarization, a significant amount of population can be transferred,
and this transfer is known as optical pumping.

The simplest forms of optical pumping are illustrated in Figure 1. Figure la
shows a model two-state atom, with one ground state and one excited state. The
laser field induces transitions between the ground and excited states, and
spontaneous emission transfers population from the excited state to the ground
state. The net result is that, as long as the laser field is present, a significant
population of excited state atoms will exist, i.e., the atoms are “optically
pumped” into the excited state. If the laser field is turned off, spontaneous
emission causes all the atoms to decay eventually to the ground state. Exactly
what fraction of the atoms are in the excited state when the laser is on (an
experimentally very important number) is determined by the strength of the laser
field, its frequency with respect to the atomic resonance, and the transition
probability of the atom.
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FiG. 1. Building blocks of optical pumping. (a) A two-level atom. The laser, tuned to
resonance, stimulates transitions between the ground state |g) and excited state |e), and
spontaneous emission transfers population from the excited to the ground state. In the
steady state, a population of excited-state atoms is maintained. (b) A three-level atom. The
laser stimulates transitions between a first ground state |gl) and the excited state.
Spontaneous emission transfers population back to |g1), and also to another ground state
|£2). In the steady state, all atomic population will be optically pumped into |g2).

Figure 1b shows a model three-level atom, in which the laser induces
transitions from the ground state to the excited state, and spontaneous emission
causes transitions into either of two possible lower states. Atoms can decay back
to the original ground state, or they can decay into a new state. If there is no
significant transition probability out of the new state, population will continue to
accumulate there as long as the laser field is present. Eventually all the atomic
population will be transferred to the new state, after which the presence of the
laser will have no significant effect.

While Figure 1 illustrates the basic principles of state selection by optical
pumping, most atoms have a considerably more complicated level structure than
is shown in either Figure la or 1b. Generally, an atom will have one or more
hyperfine levels in the ground state, each one of these will have degenerate
magnetic sublevels, and there will be a variety of states—distinct, degenerate, or
quasidegenerate—in the excited-state manifold. Nevertheless, the processes
shown in Figure 1 can be thought of as the building blocks of the optical
pumping process, and as such they provide a useful framework in which to
analyze qualitatively the behavior of a given system.

9.3 Calculations of the Optical Pumping Process

In the process of analyzing the feasibility of an experiment, an important step
involves making predictions of such things as signal to noise and total count rate
expected. Thus, it is important to be able to estimate the population fraction that
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the optical pumping process can produce in the desired atomic state. Unfortu-
nately, a great number of difficult-to-characterize experimental parameters affect
the optical pumping process to some degree; also, a number of nuances in the
photon-atom interaction, relating to coherence, might affect the outcome.
Because of these complications, it is sometimes difficult to make truly accurate
predictions of the results of a particular optical pumping setup. Nevertheless,
experience has shown that reasonable estimates can be obtained by following a
few guidelines.

Leaving discussion of some of the potential complications until later, I begin
with a rate equation approach to calculating the optical pumping process. Rate
equation calculations are relatively simple and give accurate results in many
situations. They are based on the phenomenological Einstein model, in which
each state of the atom is assigned a population n;, and population transfer
between the states occurs via stimulated and spontaneous emission.

9.3.1 Two-Level Atoms

Assuming a very narrow band laser tuned exactly to the peak of the atomic
resonance, the two-level case of Figure 1a has the rate equations [2]

iy = Qlne — Qlng + T'n,, (9.1)
hie = —Qln, + Qlng — Tn,, (9.2)

where n; and n. are the ground and excited state populations, respectively, I is
the transition rate for spontaneous decay, / is the laser intensity (i.e., the energy
per unit area per second), and Q is the stimulated rate per unit intensity. The first
two terms in Eqgs. (9.1) and (9.2) describe stimulated emission into and out of the
ground state, and the third term describes spontaneous emission. Note that if Egs.
(9.1) and (9.2) are added, the result is 7, = sy +4. = 0, which is as expected,
because the total number of atoms does not change.
The coefficient Q is given by

_ 8= le-df

ch? Awq

where c is the speed of light, % is Planck’s constant divided by 2x, € is the

electromagnetic field polarization vector, d is the dipole matrix element of the

atomic transition, and Awy is the full width at half maximum atomic line width

(in radians per second). The derivation of Eq. (9.3) involves using

time-dependent perturbation theory to obtain the transition rate for an atom in an

electromagnetic field, and then averaging over the atomic line shape. It is a little
too lengthy to include here, but it is discussed in reference [2].

Equation (9.3) can be simplified in the case of an atom whose line shape is

determined entirely by spontaneous emission. In this case, Aw, = I', and use can

(9.3)
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be made of the relationship [3] between the magnitude of the dipole matrix
element and the spontaneous decay rate T, i.e.,

*=—T :

where wy is the frequency of the atomic transition (in radians per second). With
this simplification,

0 t EX 1§ (9.5)
= g-d|, .
2nch
where A = 27c/w, is the wavelength of the atomic resonance radiation, and dis
the unit vector along the dipole moment d. The quantity |&-d|* ranges between
zero and one and contains dipole selection rule information associated with the
transition. It is unity for a truly two-level atom, and hence can be ignored for the
present. It will be important, however, in the later discussion of multilevel
atoms. '
The steady-state value of n., obtained by setting the time derivatives to zero

m Egs. (9.1) and (9.2), is
(04
=——n
20[+ T
Note that for I = %, n, = %n,, or at most only half the atoms can be pumped
into the excited state. It is common practice to define a saturation intensity I

such that when 7= I, one-fourth of the atoms are excited (assuming
|e-d|* = 1). Thus,

tot - (9.6)

Re

o= I'  zhel ©7)
sat = D) Q 3 /13 . :
The rate equations then take on the convenient form
. I
Hg = . I'(ne — ng) + I'ne, 9.8)
) I
ho = — Tmr(ne — ng) — I'ne, 9.9)

This form allows straightforward solution of the equations, with the natural
lifetime of the transition as the unit of time. To apply Eqs. (9.8) and (9.9) to a
given two-level atomic transition, then, all that is needed is the natural transition
probability I' and the wavelength A. T', which is equivalent to the Einstein A
coefficient, is tabulated for a number of atomic transitions of interest in Table I;
values of I' for a great many other atomic transitions can be found in reference

[4].
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9.3.2 Multilevel Atoms

For many situations, extension of the rate equations to multilevel atoms is
simply a matter of adding terms to take account of stimulated and spontaneous
emission for each additional state. When a complete set of equations is arrived
at, the solution can be obtained using standard numerical methods for solving
coupled linear differential equations [5].

The type of multilevel problem that is of interest for state preparation of atoms
often consists of optical pumping between two or more manifolds of magnetic
sublevels. The preferential population of one or more of the magnetic sublevels
of a particular state is often the goal of the optical pumping process, because the
result is an atomic population that is oriented or aligned in the laboratory. To
correctly determine the individual state-to-state stimulated and spontaneous
emission rates for this situation, account must be taken of the branching ratios
and selection rules for different possible transitions to or from a given level. This
information is contained in the quantity |&-d .

TaBLE . Optical Pumping Parameters for Several Atoms

Atom Transition A(nm) I'/2z (MHz)* L (mW/cm?y?
Alkalis:
Li 2812-2Pn, 3 670.8 5.8 2.5
Na 351/2*3P|/2 589.6 10 6.4
3S1/2*3P3/2 589.0 10 6.4
K 4S8,,—4P, 769.9 6.1 1.7
48,/,,4P3) 766.5 6.2 1.8
Rb 5812-5P 794.8 5.4 1.4
5812-5P3 780.1 5.9 1.6
Cs 6S1/2*6P1/2 894.3 4.4 0.80
6S812-6P3), 852.1 5.2 1.1
Alkaline earths:
Ca 4'Sy-4P, 422.6 35 61
Ba 6'Sy-6'P, 553.5 19 15
Metastable rare gases:
He 2’°8,-2°Py 1.5 1083 1.6 0.16
Ne *Prcto 640.2 6.9 34
Ar *Prag 811.5 5.9 1.4
Other atoms:
Cr 478—47pP3 429.0 5.0 8.3
475,-4"PY 4275 49 8.2
4755-47pY 425.4 5.0 8.5

“The transition probability I" is given divided by 2z, as this corresponds to the
natural line width in megahertz observed spectroscopically.
*The saturation intensity /y is calculated from Eq. (9.7).
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For an atom with resolvable hyperfine structure, the complete specification of
a magnetic substate consists of the orbital angular momentum L, the spin S, their
combination J, the nuclear spin /, the total angular momentum F, and the
magnetic quantum number M. For a transition between an “excited” level
specified by (L, S, J, I, F, M) and a “ground” level specified by (L', S’, J', I', F’,
M"),! the branching ratio factor is given by [6]

le-d|” = 2F + DRF' + 1)(2J + DQRJ' + DRL + 1)
{L’ J' S}z {J’ F’ 1}2 (F’ F 1)2
% , (9.10)
J L 1) |\F J 1y \M' —-M g

where the braces denote a 6-j symbol, the large parentheses denote a 3-j symbol,
and ¢ is *1 for o™ light or 0 for linearly polarized light [7]. If an atom has no
hyperfine structure (i.e., / = 0), Eq. (9.10) is still valid; one need only set / = 0,
F=J, and F' = J'. As complicated as Eq. (9.10) seems, in many cases the 6-/
symbols are the same for all transitions and can be ignored for practical purposes,
leaving only the 3-j symbol. The 6-j symbols do need to be considered, however,
when several different F-levels (or J-levels) in either the excited or ground state
are part of the optical pumping process.

For the stimulated terms, Eq. (9.10) is used in expression (9.5) for the
stimulated rate Q. For the spontaneous emission terms, the rate for a specific M
to M' transition is given by I'|-d|’. It should be noted that all magnetic
sublevels within a given hyperfine level have the same total decay rate I'; this
rate is “split up” into the possible decay channels according to the values of
|€-d|>. This is reflected in the fact that all the | &-d|* coefficients for spontaneous
decay from a given M-level add to unity, as predicted by the sum rules for 3-j and
6-j coefficients.

As a specific example of how a multilevel problem is set up, consider the
optical pumping of sodium on the 3S,(F' = 2) = 3P;,(F = 3) transition,
ignoring any role that might be played by other hyperfine levels in the atom. This
transition has many of the elements contained in the optical pumping of almost
any atomic transition, and it has seen a wide range of applications. The level
structure is shown in Figure 2. The quantum numbers (L', S', J', I, F") are (0,
5 4,3, 2) for the 35, (F' = 2) ground state and (L, S, J, I, F) = (1,3, 3, 3, 3) for
the 3P, (F = 3) excited state. The F' = 2 state has five magnetic sublevels,
corresponding to values of M’ ranging from —2 to +2, and the F = 3 excited
state has seven sublevels, corresponding to M = —3 -+ +3. Altogether, then,
there are 12 state populations to follow.

In the absence of a magnetic field, all the magnetic sublevels in each hyperfine
state are degenerate. Which transitions are induced by the laser, however,

"1 follow the convention of labeling ground-state levels with primes, and excited-state
levels without primes.
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State #: 6
M: -3
S 3P3/2(F=3)
3S, . (F=2
M : 1/2( )
State #: 1

F1G. 2. Optical pumping of the 35, (F' = 2) > 3Py, (F = 3) transition in sodium with

circulfrly polarized light. Selection rules limit laser-stimulated transitions to AM = + 1

for 6™ light, and spontaneous emission transfers population with AM = 0, =1. The result
is a transfer of population to the M’ = +2 state, which corresponds to a spin-polarized
(both electronic and nuclear) ground state, and the M = +3 state, which consists of a
spin-polarized, orbitally oriented state. The state numbers refer to the numbering scheme
in Egs. (9.11)—(9.20).

depends on optical selection rules and the polarization of the laser. For instance,
if 67 (or o ) circularly polarized laser light is used, only transitions with
AM = +1 (or —1) are allowed. If linearly polarized light is used, only AM = 0
is allowed. Thus, the number and character of the equations is different,
depending on the polarization of the light.

The case of circularly polarized light is of specific interest because it has been
used to create populations of spin-polarized ground-state, and also pure angular
momentum, spin-polarized excited-state, sodium atoms [8]. For o' (e,
left-handed circularly polarized) light [9], transitions to the excited states 13, —3)
and |3, —2) are never stimulated, so these states can be eliminated from the rate
equations (here the notation |F, M) is used to denote a given magnetic state, with
L, §, J, and I dropped for simplicity). Ten equations then describe the remaining
states, taking into account stimulated transitions between |2, —2') and |3, —1);
[2', —=1") and 3, 0); etc., as well as all the possible spontaneous transitions. For
compactness in the equations, the states can be numbered 1 to 12, starting with
|2', —2') and moving from left to right across the ground and then the excited
state, as shown in Figure 2. The 10 equations for ¢ * optical pumping are then

r
i = — — — + —ng, 9.11
ny 2. 15 (ng — n1) 15 ng ( )
i Ij( )+8F +F (9.12)
= —0— - — - Hg, .
BT s T T g g
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N LN ) os
Hy = —(nyp—n — ng + — — ny0, .
3 s 10— 13 5T Hg S Rio 9.13)
o qor r 8T or
’14:5;;?(”11_’14)"‘;”9“‘6”10"‘?”11, (9.14)
) I r r
As =me(n12—n5)+gnlo+§n“ +Fn10, (915)
g = L r ( ) — T 9.16
rig 20 15 ny — ng ng, (9.16)
IT
Ry = ZIsat g (}12 - n9) - Fl’lg, (917)
, [ 2
g = T (n3 — n1g) — Inyo, (9.18)
' I or
Ay = Tsat'?(m—nu)—rnn, 9.19)
. I
Ry = leat F(l’ll - }13) - Fl’llz. (920)

Given the symmetry of the magnetic sublevels, the equations for ¢~ optical
pumping are identical to Eqs. (9.11)-(9.20) with a simple relabeling of states.
The equations for linear polarized excitation will of course be different, but
similar in character.

Before solving Eqgs. (9.11)+(9.20) numerically, it is useful to observe a few
qualitative features. For instance, as always should be the case, #j, = 2,4, = 0
(this provides a useful check to make sure the coefficients are correct!).
Furthermore, the evolution of the population can be followed by inspection, with
the help of Figure 2. It should be clear that as time progresses, population will be
transferred to states with more and more positive values of M, eventually leading
to a steady-state configuration that is reduced to a two-level system with
population in only the |2/, 2') and |3, 3) states. This is, in fact, one of the main
reasons why optical pumping of this transition in sodium has seen so much
application. On one hand, the generation of a two-level atom allows experimental
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tests of a number of fundamental quantum electrodynamical phenomena. On the
other hand, sodium in the |2’, 2') ground state is a completely spin-polarized
atom, with nuclear and electron spin both oriented in the laboratory. The
orientaion, either parallel or antiparallel to the propagation direction of the laser
light, can be selected by pumping with either ¢+ or g~ light. Similarly, the state
|3, 3) is a state with electron spin, nuclear spin, and orbital angular momentum
oriented in the laboratory.

Using the rate equations, the analysis of circularly polarized excitation in
sodium can then be broken down into (a) determining the time it takes to reach
the two-level condition (the optical pumping time), which is found by solving the
time-dependent rate equations, and (b) determining the steady-state excited |3, 3)
population fraction, which can be obtained using Eq. (9.6) for a two-level
system. A similar analysis can be applied to linear polarized excitation, but the
steady-state excited state population is found by solving the simultaneous
equations obtained when all time derivatives are set to zero.

When we compare linear to circularly polarized excitation, an important point
must not be overlooked. When the selection rule AM = 0 is invoked for linearly
polarized excitation, an assumption is made that the axis of quantization is along
the electric vector of the laser field. The selection rule AM ==+1 for circularly
polarized light, on the other hand, assumes the quantization axis to be along the
direction of light propagation. Thus, care must be exercised when interpreting
the results of an optical pumping calculation in the reference frame of the
laboratory.

9.3.3 Laser Frequency Dependence and Power Broadening

Until now, all the rate equations that have been discussed assume an infinitely
narrow laser frequency tuned exactly to the center of the atomic resonance. It is
possible, under some circumstances, to extend the applicability of rate equations
to situations in which the laser frequency is still narrow, but detuned from the
center of the atomic resonance by an amount A. As will be discussed in more
detail later, this is possible when there are no other nearby atomic levels, and
when the long-time behavior (compared to 1/T") is of interest.

While a correct treatment requires the optical Bloch equations, the depend-
ence on A can be introduced into the rate equation approach by arguing that the
instantaneous stimulated rate QI is dependent on A because the atomic transition
has an instantaneous Lorentzian line shape with a full width at half maximum of
I'. This argument is borne out by comparison with exact optical Bloch equation
results [2]. Thus, an extra factor

FZ

= 9.21
T2 + 4A° ©:21)
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is included in all the stimulated rate terms. This can be done for a two-level atom,
and also for a multilevel atom such as the one shown in Figure 2, where there are
only two energies involved.

With the addition of A-dependence, the two-level steady-state excited-state
population [Eq. (9.6)] becomes

oI
Re = Riot (9.22)
20I% + T
- Fz(l/lsat) (9 23)
AT + 487 + TP ™ ‘

It is evident from examination of Eq. (9.23) that with increasing intensity, the
profile broadens because the center of the line saturates earlier than the wings.
The full width at half maximum dwrwum of the power broadened profile
described by Eq. (9.23) is given by

Sowpwum = T[1 + (Wg)]". (9.24)

It should be emphasized that Eq. (9.23) describes the steady-state frequency
dependence of the excited-state population. Because of the intensity dependence
in Eq. (9.23), it is tempting to say that the atomic transition is power-broadened.
It must be remembered, however, that this is only true in the steady state;
the instantaneous (i.e., on a time scale short compared to the stimulated rate)
atomic line width is still governed by the unbroadened line shape given in
Eq. (9.21).

Power broadening is a very real effect in most practical situations, since
saturation intensities are generally a few milliwatts per square centimeter, and a
laser with diameter of order 1 mm and power only a few milliwatts can have an
intensity of several hundred milliwatts per square centimeter. Thus, the line
width observed in a laser-induced fluorescence measurement of a beam of atoms
will almost always be power-broadened unless that laser intensity is kept to a
minimum,

9.3.4 Limitations of Rate Equations

While rate equations provide a practical tool for evaluating a broad range of
optical pumping systems, it must be remembered that they represent only an
approximate solution. If they are to be used in a given situation, some under-
standing of what is left out is essential in order to avoid misleading results. In this
section an attempt is made to set out some guidelines for the appropriate use of
rate equations. The assumption is that in many instances they will still provide a
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useful tool for evaluating experiments in state selection, even though in some
cases they clearly are inadequate.

The major omission in a rate equation approach is any coherences that might
develop between the quantum states of the system. In a fully quantum treatment
of a system of atomic levels, the full state of the system is described by a set of
complex amplitudes, one for each atomic level in the system. If one allows for
a number of posible sets of amplitudes, each with a given probability, the system
is propetly described by a density matrix. In general, there will be specific phase
relationships between the complex amplitudes for each level, and these relative
phases represent coherences between the states. The relative phases show up as
off-diagonal elements in the density matrix. Since rate equations follow state
populations, which are associated with the square magnitudes of the complex
amplitudes, or just the diagonal elements of the density matrix, they do not keep
track of the relative phases, and hence have no coherence information.

Exact treatment of the coherence between levels in a two-level system can be
obtained using the optical Bloch equations. In a multilevel system, such as might
be encountered in a state-selection experiment, extensions of the optical Bloch
equations can be used, though the problem rapidly becomes a complex one.
Discussion of the optical Bloch equations is beyond the scope of this work; for
such a discussion and some approaches to the multilevel problem, the reader is
encouraged to consult references [2, 10, 11]. Instead, let us concentrate on the
following question: Given a specific set of atomic levels and a laser to pump
them, will a rate equation approach be adequate for predicting what we want to
know about the system? To answer this, the following queries should be
useful.

9.3.4.1 Are Transient Populations Important? If the experiment to be
carried out relies only on steady-state populations produced by cw (or quasi-cw)
laser illumination, rate equations may well be quite adequate. If not, there may
be problems. For example, a major, well-known effect that is not seen in a rate
equation treatment is Rabi oscillations. These are a manifestation of coherence
induced by the laser between the ground and excited states, and consist of
transient oscillations in the atomic population between the ground and excited
state. Their frequency (given by wg = I’(I/ZISat)l/2 for a two-level atom [2]) is
determined by the stimulated rate, and they can cause as much as a 100%
movement in population between the ground and the excited states. They do
decay, however, on the time scale of the natural lifetime (or faster in the presence
of collisions), and when they have decayed, the state populations often follow the
rate equation predictions quite closely. So, if the state distribution of the atom
within the first natural lifetime or two after the laser is turned on is important, rate
equations should not be used.

It should be noted that in some situations it is not completely trivial to
determine if the experiment to be performed is sensitive to transient populations,
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since the eventual population distribution in the steady state could depend on
transient effects. This occurs, for example, in the case of circularly polarized
excitation of sodium when one considers the influence of the other hyperfine
levels F' =1 and F = 2. The F' = 1 state lies 1772 MHz below the F' = 2
state, and the F = 2 state lies 59.6 MHz below the F = 3 state. Before the
population is completely transferred to the [2',2') — |3, 3) system, where it is
isolated by selection rules from all other atomic levels, there is some probability
that the /" = 2 state will be excited, because it is only a few atomic line widths
away from the F = 3 state. This opens the pathway for decay into the F' =
ground state during the transient period before optical pumping is complete.
Thus, how many atoms find their way into the [2/,2") — |3, 3) two-level system
depends critically on the transient behavior of the state populations, the correct
modeling of which requires more than rate equations.

9.3.4.2 Do Coherences Matter for the Planned Experiment? Even
in the steady state, coherences are induced between all states connected by the
laser. These coherences do not appear in a rate equation approach, so if the
experiment is somehow sensitive to them, rate equations should not be used. In
some cases, the effect of these coherences can be dramatic. For instance, if two
different ground-state sublevels are coupled by two lasers to the same excited
state, it can happen that there is no steady-state excited state population. This
phenomenon, known as coherent population trapping [12], is a result of the
coherence that develops between the two ground-state sublevels. It does not
show up in a rate equation treatment of this situation. In some situations,
however, it can be put to use if population transfer between two ground states is
desired without subjecting the atoms to spontaneous emission [13].

One must take care, however, not to be misled by trivial coherences induced
by coordinate rotations. Consider, for example, linearly polarized excitation of a
J' =0 — J =1 transition. With a quantization axis along the electric vector of
the linearly polarized light, the selection rule AM = 0 applies, and the system
becomes a simple two-level atom. The rate equation approach will work just fine.
If one insists, however, on a quantization axis along the direction of the light
propagation, then the linearly polarized light must be broken down into ¢* and
o components, which are coherent with each other. The result is a coherent
excitation of the |1, 1) and the |1, — 1) states. The coherence between these two
states, which must be maintained to get the right answer, will be lost in a rate
equation approach. Thus, before applying the rate equations, it is important to
rotate the coordinate system of a given problem to a system that eliminates as
many coherences as possible.

In sum, it can be said that rate equations can be used in situations where the
steady-state populations are of interest, and where coherence either does not
matter or cannot develop between more than two states (ground and excited) at
a time. As a result, a simple situation such as that shown in Figure 2 is quite
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appropriate for rate equations. However, cases with multiple excited levels
within a few natural line widths, or multiple lasers tuned to the same state, should
be approached with caution.

9.4 Calculations and Experimental Reality

Even if the rate equation approach were exact for all situations, its usefulness
(and, indeed, the usefulness of any theory) can still be hampered by a number of
experimental factors that can influence the outcome of an optical pumping setup.
These factors must be taken into account in planning an experiment, and an
evaluation made as to whether they will have a significant influence. If the effect
of these factors is unknown or ignored, it is useless to perform any modeling
calculations because the predicted results could be dramatically different from
reality. The following discussion covers a number of effects that can influence
the optical pumping process.

9.4.1 Laser Spatial Profile

In a crossed-beam arrangement, where the laser beam intersects the atom
beam at 90°, the laser spatial profile has two effects. The profile along the
direction of motion of atoms translates into a time-dependent laser intensity for
the atoms, because the atoms are travelling with some velocity v. This can be
taken into account relatively easily by using a time-dependent intensity in the
rate equations. It must be remembered, however, that (a) not all atoms travel with
the same velocity, so some averaging will need to be done over the velocity
distribution of the atoms, and (b) if the time dependent intensity varies too
rapidly, there may be important. nonadiabatic or transient effects. The profile
transverse to the atom beam is important because if it is nonuniform, different
parts of the atom beam experience different laser intensities. If the optical
pumping process is strongly intensity dependent, a nonuniformly pumped atom
beam will result.

9.4.2 Doppler Shift Effects

Because of the relatively high velocity of thermal atoms, and the precision
with which a laser is tuned to the atomic frequency in an optical pumping
experiment, the Doppler shift can be a substantial effect. If an atom is traveling
at exactly 90° to the laser beam, there will be no first-order Doppler shift.
However, atom beams and laser beams generally have some amount of diver-
gence, so there will always be a range of angles between the atomic trajectories
and the laser. The result is that atoms in different parts of the beam will
experience different laser frequencies, shifted by an amount
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ow = k-v=wgcos 0, (9.25)
where k is the wave vector of the laser light, v is the velocity of the atom,
w = 2mc/A is the laser frequency, and 6 is the angle between k and v. As an
example, consider a thermal sodium beam pumped on the 589 nm resonance line.
For 0 =1 degree (17 mrad), év = dw/2n = 24 MHz, a quite significant shift
compared to the natural line width of 10 MHz. Of course, not only do different
parts of the beam experience different laser frequencies, but there is also the
thermal velocity spread in the beam, which results in a range of Doppler shifts
for any given position in the beam. Clearly, the Doppler shifts in a given
experiment must be estimated and either deemed insignificant or averaged over
before optical pumping calculations can be relied on.

9.4.3 Atom Deflection Effects

In addition to ordinary Doppler shifts, there can arise more complicated
effects resulting from the deflection of the atom beam by light pressure. Because
the optical pumping process usually involves a number of spontaneous emission
events, there will in general be a net transfer of momentum from the laser to the
atom. Thus, as the atom passes through the optical pumping region, the atom is
accelerated along the laser propagation direction, resulting in a changing Doppler
shift as a function of time. The transverse acceleration of the beam depends on

the laser intensity, the detuning, and the instantaneous Doppler shift; it is given
by [14]

_ Thk Vg
2m 1+ Iy + 4[(A — k- VTP

For sodium with /> [, a can be as large as 10° m/s2, which means that the
angle that the atom beam makes with respect to the laser direction changes by
about 1 mrad per millimeter of travel along the beam. Under some circum-
stances, the changing Doppler shifts induced by this changing angle have
significant effects on the optical pumping process.

(9.26)

9.4.4 Incomplete Laser Polarization

In the ideal optical pumping experiment, the polarization of the laser is
assumed to be exactly as specified—100% circularly polarized, for example.
Because of imperfect polarizers, natural birefringence in windows, and reflection
effects which occur in a real experimental situation, this is often not the case. It
is thus important to make an estimate of how sensitive an optical pumping
scheme is to the “wrong” polarization. Often, the effects are not severe if the
amount of “wrong” polarization is small. In a circularly polarized J — J + 1
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optical pumping scheme such as the one in Figure 2, the effect is only a
somewhat incomplete transfer of the population to the desired subelevels. The
effects, if small, can be estimated with rate equations, but one should be aware
of the possible coherences between excited sublevels that would be neglected.

Situations with more levels must be treated with more care, however. The case
of sodium is an example of this, The problem arises from the loss mechanism to
F' =1 mentioned earlier under transient effects. If the polarization of the
pumping laser is not completely circular, the loss mechanism is no longer
transient. With imperfect ¢ light, there is always some probability that the
2',2") state will make a transition to the |3, 1), or worse, the |2, 1) state, from
which the pathway is open to the F' = 1 state. Because of the nature of rate
equations, if a pathway to a population “sink” exists, the only true steady-state
solution consists of all population eventually in the “sink.” Thus, a laser with
only slightly impure polarization can result in a total loss of population from the
desired steady-state result.

9.4.5 Magnetic Fields

Magnetic fields can have profound effects on the optical pumping process in
the situation where one is trying to produce a specific distribution of magnetic
sablevels in the atoms. First of all, magnetic fields will Zeeman-shift the energy
levels, changing the effective frequency of the laser. For an atom with hyperfine
structure in a field that is not too strong, this shift is given by [15]

eB

Awy = — g M, (9.27)

where B is the magnetic field strength in teslas, m, is the electron mass, M is the
magnetic quantum number, and
FF+D)+JJ+ D=1+ 1)

= R 9.28
gF = & 2F(F + 1) ( )

with

g1 =

+J(J+ D+SE+1H)—-LEL+1)
2J(J+ 1) '

I the atom does not have hyperfine structure, Eq. (9.27) still holds, with F
replaced by J. For example, the Zeeman shift of the |3, 3) sublevel of the 3P,
level in sodium is Aw; /27 = 2.8 X 10" MHz/tesla.

More troublesome, however, is the fact that the atomic angular momentum
will precess if there is a magnetic field that is not along the quantization axis.
This precession is related to the Zeeman effect, and the rotation of the atomic
angular momentum vector (in radians per second) is given by the same expres-
sion (9.27), multiplied by sin o, where « is the angle between the quantization

(9.29)
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axis and the magnetic field. The result is that the orientation of the atom, or
equivalently, the magnetic sublevel population distribution, will change with
time. In the case of the sodium [2’, 2') state in a field perpendicular to the original
quantization axis, the orientation changes at 8.9 X 10'° radians per second per
tesla. At a thermal velocity of 800 m/s, this corresponds to a rotation of 6 degrees
after traveling only 1 cmin a 10~ tesla (1 milligauss) field.

Besides ruining the atomic orientation, this precession also has an effect
similar to incomplete polarization in any situation analogous to circularly
polarized pumping of sodium. Because the precession causes a continual redis-
tribution of population toward sublevels with smaller M, the opportunity to make
transitions to the F = 2 sublevels is always there. Again, this opens the loss
channel to F' = 1, making the complete loss of population a possibility.

From a practical point of view, then, magnetic fields must be well controlled
in an optical pumping experiment. Ideally, they should be reduced to the 10~ ’
tesla (1 milligauss) level to prevent unwanted precession and Zeeman shifts. In
some circumstances, however, a weak “guide” field (i.e., weak enough to cause
minimal Zeeman shifts but strong enough to overpower any residual stray fields)
can be applied along the desired quantization axis, provided other aspects of the
experiment are not sensitive to this field.

9.4.6 Radiation Trapping

This effect can lead to problems in experiments where high-density atomic
beams are employed [16]. If the density is high enough, the fluorescence emitted
by an optically pumped atom can be large enough to affect the optical pumping
of neighboring atoms. Since this fluorescence comes from arbitrary directions
and has varying polarization, the result is a redistribution of magnetic sublevel
populations. As a rule of thumb, atomic densities below about 10'® atoms-cm ™3
are generally safe from radiation trapping. A check can be made relatively simply
by carrying out the experiment to be done with the optically pumped atoms at a
range of atomic densities and observing whether the outcome varies. Theoretical
calculations can also be made based on numerical simulations if so desired
(7.

9.5 Diagnosis of an Optically Pumped Beam

While calculations provide a very useful guide for setting up an experiment,
the possible theoretical shortcomings and experimental pitfalls are such that
some sort of probe of the state distribution should be carried out before an
experimental result can be relied on. Usually some sort of spectroscopic probe
can be arranged, expecially since there will generally be laser light available
from the optical pumping,
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Diagnosis of experiments that involve degenerate magnetic sublevel popula-
tions, such as alignment or orientation of an alkali atom, have been approached
by a number of methods. A very straightforward method is to expose the atoms
to a magnetic field strong enough to Zeeman-shift the magnetic sublevels to the
point where they are resolvable spectroscopically. The relative populations can
then be observed by monitoring the relative peak heights in a laser-induced
fluorescence spectrum. This method has been used with sodium [18, 19] and
appears to work quite well. Care must be exercised on a few points, however.
The method could prove problematic if the experiment to be done with the
optically pumped atoms is sensitive to magnetic fields. In principle, it is possible
to arrange for the experiment to be conducted in a field-free region, after which
the atoms enter the magnetic field, but one must always worry about how well
isolated the experimental region is. Furthermore, changes can occur in the
magnetic sublevel population on entering the magnetic field if it is not along the
quantization axis defined for the optical pumping, or if there are strong field
gradients.

Another approach involves measuring the degree of polarization and angular
dependence of the fluorescence in either the optical pumping region itself or in
a probe region. This method has the advantage that no magnetic fields need to be
applied, but has the disadvantage of sometimes relying on some degree of
modeling of the state distribution.

When a given population distribution in an excited-state magnetic sublevel
manifold decays and emits fluorescence, the light intensity and polarization will
have well-defined angular dependencies. Each excited magnetic sublevel contri-
butes to the intensity according to the decay paths open to it, as dictated by the
selection rules AM = 0, *=1. The contribution from each decay path is deter-
mined by the relevant Clebsch—-Gordan coefficient. The angular dependence of
the intensity is given by sin” 0 for AM = 0 transitions, or (1 + cos’ 8)/2 for
AM ==1, where 6 is the angle between the quantization axis (2) and the
direction of observation. The polarization of the light for AM = 0 transitions is
linear along 2 for # = n/2. For AM ==1, the light propagating along § = 0 is
circular, ¢*, but the light propagating along 6 = 7/2 is linear in the plane
perpendicular to Z [20].

To probe an excited state, then, the fluorescence from the optical pumping
region can be analyzed and used to infer the relative sublevel populations. In
some cases it may be desirable to characterize the sublevel population distribu-
tion in terms of state multipoles. These can provide a physical picture of the
excited-state configuration, which may lead to some insights. Reference [16]
provides more details on this technique as applied to sodium.

A ground-state distribution can be investigated by using a very weak probe of
well-characterized polarization. Using knowledge of the selection rules and
Clebsch—Gordan coefficients, it is possible to predict what excited-state magnetic
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sublevel populations would be produced by the probe, given a specific ground
state distribution, assuming no saturation or optical pumping.” The polarization
and angular distribution of the probe fluorescence can then be predicted, and
measurements compared with this. This approach is not a direct measurement,
since it relies on first modeling the ground state population, and then seeing if the
model agrees with experiment, but nevertheless it can be used with success in
many instances [21].

In cases where fluorescence probes are not convenient and the ground-state
magnetic sublevel population distribution is of interest, another approach,
making use of a Stern—Gerlach-type magnetic field, can be utilized [22]. The
atom beam is passed through a region of magnetic field B with a strong gradient,
and the spatial profile is measured downstream. The atoms feel a deflection force
F = (1 * V)B according to their magnetic moment ., which is related to their
magnetic quantum number M by p = upgrM2 [ug is the Bohr magneton
eh/2me, and gr is the g-factor, given by Eq. (9.28)]. With a suitable arrangement
of strong fields and long flight times, individual peaks corresponding to each
magnetic sublevel can be resolved in the spatial profile of the atom beam. The
relative populations can then be easily monitored as a function of optical
pumping parameters. Of course, as in the case with Zeeman separation of the
sublevels, one must be extremely careful with stray magnetic fields when using
this technique.

9.6 Specific Atoms

This chapter ends with a discussion of some experimental aspects of specific
atomic species that have been or could be optically pumped for a state-selected
experiment. The atoms are grouped in categories that have similar properties,
with a few general words about each category. Tables I and II contain relevant
parameters for the transitions of interest in the species discussed. For atoms not
discussed here, energy levels can be found in reference [23], transition probabili-
ties can be found in reference [4], some hyperfine structure information is
available in reference [24], and some isotope shifts can be found in reference
[25].

9.6.1 Alkalis

The combination of a simple electronic structure, strong resonance transitions
in the visible or near infrared, and relative ease of forming an atomic beam has
made alkali atoms a popular choice for many applications.

2 Optical pumping and even saturation can begin to occur at very low power levels. The
experimenter is warned to resist the temptation to turn up the power to get a little more
signal in this type of experiment!
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For state-selected collision studies, as well as other applications, sodium has
been widely used [8, 19, 21, 26-32]. A good description of the fundamentals of
sodium optical pumping, as applied to state selection, has been given by Hertel
and Stoll [26]. Atomic beams can be formed with oven temperatures in the
300-400°C range, and the strong D, and D, lines, at 589.6 and 589.0 nm
respectively, lie within the peak range of the laser dye rhodamine 6G. There is
only one stable isotope, 23Na, which has a nuclear spin / = 3/2. Thus, the atom
has hyperfine structure, and it generally must be resolved in an optical
state-preparation experiment. Laser line widths of order 1 MHz are required for

TasLE 1. Hyperfine Splittings (HFS) for Selected Isotopes”

Isotope Abundance 1 State HFS [F-splitting (MHz)-F1°
°Li 7.4% 1 2812 3-228-2
2P, 726.2-3
2Py, $-3.23-1.9-3
Li 92.6% 32 X 1-803.5-2
2P, 1-92-2
2P 3-9.3-2-5.9-1-2.8-0
Na 100% 32 38 1-1772-2
3Py, 0-16.5-1-35.5-2-59.6-3
PK 94% 312 48, 1-462-2
4pP,, 1-56-2
4Py, 0-3.3-1-9.4-2-2/-3
®Rb 72.2% 52 5812 2-3035.7-3
5P, 2-362.1-3
5Py, 1-29.3-2-63.4-3-120.7-4
*’Rb 27.8% 312 5812 1-6834.7-2
5P, 1-812-2
5P, 0-72.3-1-157.1-2-267.2-3
Bes 100% 72 651 3-9192.6-4
6P\, 3-1168-4
6Py 2-151-3-201-4-251-5
3cr 9.6% 32 'S, 3-206.5-3-289.1-3-371.7-%
P, 3-40-3-66-3-93 %
P 3735543
P, T-65-3-53-3-41-

“It should be noted that in an atomic beam consisting of a mixed isotopic sample,
the hyperfine manifolds of the isotopes will generally be offset from each other by
the isotope shift.

? F-values are displayed with the lowest energy level first.
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this, so a frequency-stabilized cw dye laser, pumped by a visible argon ion laser,
is necessary.

One aspect of single-frequency optical pumping in sodium that must be kept
in mind is the potential for transfer between hyperfine ground states [10]. In some
cases this may be the desired optical pumping process, but in others the goal may
be to maintain a closed system in which the atoms interact repeatedly with the
laser photons. Transfer to the other hyperfine level represents loss to the
experiment in this case. While it is possible in principle to tune only to the
F’ =2 — F =3 transition in the D, line, so that transitions to F’ =1 are
forbidden by the AF = 0, +1 selection rule, in practice the F = 3 state is not
perfectly resolved from the F = 2 state, being separated by only 59.6 MHz. The
F' =2 — F =2 transition has a wing which overlaps the F/ =2 — F =3
frequency, and this wing can be quite significant, especially if there is power
broadening.

An experimental solution to this problem has been to perform the optical
pumping with two laser frequencies, separated by 1712 MHz. One laser fre-
quency is tuned to the F' =2 — F = 3 transition, and the other is tuned to the
F’ =1 — F =2 transition, returning atoms that may have been optically
pumped into the wrong state. The extra laser frequency can be generated with
either an electro-optic or acousto-optic modulator. Electro-optic modulators
produce the second laser frequency without spatial separation, and they always
make a symmetric pair of sideband frequencies at plus and minus the modulation
frequency. This can be put to advantage by modulating at 856 MHz (an easier
frequency to work with) and utilizing the two side bands instead of the carrier
frequency. Electro-optic modulators tend to be somewhat inefficient, however, so
many expetimenters have used acousto-optic modulators. These spatially sepa-
rate the shifted beam, and they only shift in one direction at a time, the direction
being chosen by the angle of incidence on the modulator.

The optical pumping of cesium has also been extensively studied, mainly
because of its application in atomic clocks [33], and also because the D, line at
852.1 nm falls within the range of inexpensive diode lasers [34]. The only stable
isotope, '>>Cs, has nuclear spin 7/2. The hyperfine splitting is much larger than
in sodium, so the problem of loss to the “wrong” ground-state hyperfine level is
less important. Nevertheless, optical pumping with two laser frequencies is often
advantageous, because more of the atomic population can be accessed. To
achieve this, two or more diode lasers can be used (they are, after all, quite
inexpensive), or the frequency of the laser can be modulated by varying the
injection current [35].

Rubidium has also been the subject of a number of optical pumping studies,
a great majority of which have been in a vapor cell. The D, and D, lines, at 794.8
and 780.0 nm, respectively, are also accessible to diode lasers, so it is a good
candidate for an inexpensive experiment. There are two stable isotopes, ° Rb
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(72.2% abundance, / = 5/2) and ¥Rb (27.8% abundance, I = 7/2), each of which
has well-resolved hyperfine structure. The two isotopes with significant natural
abundance make rubidium unsuitable for an experiment in which all the atoms in
the beam must be identically state-selected, such as some collision experiments
(though it is in principle possible to use more lasers and pump all atoms).
Rubidium has, however, seen wide application in experiments where the exis-
tence of other isotopes does not interfere with the measurements, such as in the
field of cooling and trapping [36].

Lithium, with its two stable isotopes °Li and 'Li, has also been optically
pumped [37], though it poses some special problems. The laser wavelength
required is 670.8 for both the D and D, lines, which are separated by 10 GHz.
This wavelength can be accessed with a single-frequency stabilized dye laser
operating with DCM laser dye, or with a visible laser diode. The problems arise
because the hyperfine structure is not well resolved, especially in ’Li. To avoid
the loss mechanism to the “wrong” hyperfine ground state, as discussed for
sodium, two-frequency optical pumping is a necessity. For state-selection of
ground state atoms, this is not a problem, but if a significant population of excited
states is desired, one must be aware of the possibility of coherent population
trapping. Coherently exciting the same excited state from two ground-state
hyperfine levels could greatly reduce excited-state populations [12]. A possible
way to circumvent some of these problems is to use isotopically enriched oL,
though this can increase the cost of the experiment.

Potassium, with D-lines at 769.9 and 766.5 nm, has seen little use as an
optical pumping target for state-selective experiments. The wavelengths require
a Ti:sapphire laser, or a dye laser with LDS700 laser dye and a krypton ion pump
laser. In principle, however, there is no reason why it could not be optically
pumped in the same way as the other alkali atoms.

9.6.2 Alkaline Earths

While not as popular as the alkalis, some alkaline earths have been optically
pumped to provide state-selected targets. The attraction of these atoms lies in the
simple 'S, ground state and 'P excited states. The excited P-state can be aligned
and/or oriented, and collisions can be studied without the complication of spin
polarization.

Barium can be optically pumped on the 6'Sy = 6'P, transition (wavelength
553.5 nm) using rhodamine 110 laser dye [38]. There are quite a few naturally
occurring isotopes of barium (134, 135, 136, 137, 138), but these are well
separated spectroscopically, so they do not pose a significant problem unless the
whole atom beam must be state-selected. A possible cause for caution in using
barium is the metastable 6'D, level, to which the 6'P, level can decay. The
branching ratio for the 6'P, going to the ground state vs. the 6'D, state is 425: 1.
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This ratio is fairly large, so if the optical pumping process is modeled with
rate equations and monitored experimentally (to the extent possible), the loss
mechanism can be kept under control.

Calcium has a similar line, the 41S0 - 4 P, transition at 422.6 nm, which can
be optlcally pumped with a dye laser using stilbene 3 laser dye pumped by a UV
argon ion laser [39]. An alternative source of radiation for this wavelength is a
Ti:sapphire laser doubled in an external buildup cavity [40]. Isotope shifts and
hyperﬁne structure are not a problem for calcium, because it is naturally 97%

Ca, which has zero nuclear spin. As with barium, there is an intermediate
metastable 4'D state, to which population can decay from the excited state. In
this case, though, the branching ratio is 10°: 1 in favor of the ground state, so
population loss can almost always be ignored.

9.6.3 Metastable Rare Gas Atoms

While excitation of rare gas atoms from the ground state to the lowest- -lying
excited states generally requires many electron volts of energy (i.c., VUV
photons), they all have metastable states, easily generated in discharge sources,
which can be optically pumped in the near infrared. Applications have included
state-selected collision studies, polarized electron sources, and cooling and
trapping,.

Helium has seen wide application in state-selected experiments, both as a
collision participant [41] and as a source of polarized electrons [42]. The 23S,
metastdble state (19.8 eV above the ground state) has accessible transitions to the
2 Po 1,2 states at 1.083 pm wavelength. This wavelength can be generated with

a specially adapted Ti:sapphire laser, pumped by a visible argon ion laser [43],
with a laser using a LNA crystal as its gain medium [44], or with recently
available laser diodes.

Metastable neon has also been optically pumped [45-48]. The two metastable
states are *P, and °P,, at 16.6 and 16.7 eV above the ground state, respecnvely
These levels can be excited to an array of states of the configuration 15°2s° 2p°3p,
denoted in the Paschen notation by a; -+ a10. Of all these excited states, only the
o state [2p ( P112)3p, J = 3] can be excited without opening the possibility of
cascade down to the ground state and subsequent loss of population. The
wavelength for the transmon to this from P, is 640.2 nm, accessible with DCM
laser dye. Like the S1 - P2 transition in helium, this transition has the right
sublevel configuration (J = J+ 1) to allow creation of a spin-polarized,
oriented target, as may be desirable for state-selected colllsmn experiments. The
natural isotope distribution of neon is 91% *’Ne and 9% **Ne. Both of these have
zero nuclear spm so there is no hyperfine structure There is an isotope shift,
however, so the *Ne line is separated from the “’Ne line by 1630 MHz.
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Argon is similar to neon. The 3P2 and 3P0 states are metastable, with energies
of 11.5 and 11.7 eV above the ground state, respectively. The transition most
useful for optical pumping is from the 3p, state to the 3p5(2P3/2)4p(J = 3), or ag
state, with wavelength 811.5 nm [49]. This wavelength is obtainable with a dye
laser, a Ti:sapphire laser, or a diode laser. Naturally occurring argon is 99.6%
40 . . .. . .

Ar, with zero nuclear spin, so hyperfine splitting and isotope shifts are not
important in this case.

9.6.4 Other Atoms

Besides the alkalis, the alkaline earths, and the metastable rare gases, few
other atoms have been optically state-selected in an atomic beam. Chromium has
been optically pumped to produce a polarized high-spin target for collision
studies with polarized electrons [50]. The 'S5 — ’P} transition at 425.43 nm is
accessible with a dye laser operating with stilbene 3 laser dye pumped by a UV
argon ion laser. The natural isotope abundance contains 84% 52Cr, 4% 50Cr, and
2% 54Cr, all of which have no hyperfine structure, and 10% 53Cr, which has
hyperfine structure with 7 = 3/2. The *°Cr 425.43 nm line has an isotope shift of
about 132 MHz relative to the >*Cr line; the **Cr isotope shift is negligible,
however.
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