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Revised formulas for diffraction
effects with point and extended sources

Eric L. Shirley

Revised formulas to estimate diffraction effects in radiometry for point and extended sources are derived.
They are found to work as well as or better than previous formulas. In some instances the formulas can
be written in closed form; otherwise their evaluation entails performing simple integrations as indicated.
Formulas have been found for nonlimiting apertures, large defining apertures, and pinhole apertures.
Examples of all three types of application are presented.

OCIS codes: 050.1220, 050.1960, 120.3940, 120.5630, 260.3090.
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1. Introduction

The wave nature of light restricts the validity of geo-
metrical optics. However, practical radiometry of-
ten relies on geometrical optics to relate source
radiance, geometrical throughput of a setup, and de-
tector efficiency, so that one of these quantities can be
found if the other two are known. Consequently, the
limitations of geometrical optics introduce diffraction
errors into measurements. Compensating correc-
tions, which are based on the theory of diffraction at
apertures, can be an integral part of measurements.
For a given setup, diffraction errors tend to increase
with wavelength l, so corrections are a critical part of
radiometry in the long-wavelength infrared region.

Whereas a real optical setup can be quite compli-
cated, one can often estimate diffraction errors by
considering one of the following two hypothetical sit-
uations: Either a defining aperture stands between
an ~extended! source and a detector or a nonlimiting
perture ~i.e., a baffle! is between those two optics.
n either case the geometry of a hypothetical setup
hould mimic a portion of the real setup that contrib-
tes to diffraction errors, so diffraction affects flux

ncident upon the hypothetical detector in the same
ay that diffraction influences real measurements.
uch a defining aperture functions in one of two
ays. Either the detector is underfilled, so both the

ully and the partially illuminated regions of the de-
ecting plane are contained wholly within the detec-
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or, or the reciprocal situation is true, so the source
verfills completely all regions of the source plane
een through the aperture by any part of the detector.
lso, if one has several baffles situated in series be-

ween the same source and detector, the effects of
ach baffle may contribute to the total diffraction
rror in approximately additive fashion, permitting
he baffles to be considered one at a time.

Determination of diffraction effects in the above
ypothetical situations has been of long-standing in-
erest in radiometry. Considerable effort has been
evoted to the study of setups that have cylindrical
ymmetry, to which the present study is limited.
levin1 analyzed the loss or absence of geometrically

expected flux caused by a limiting aperture, using the
mathematical formulation of Focke.2 Steel et al.3
addressed this problem as well, dealing explicitly
with effects of using an extended source in the limit-
ing case. Those researchers also discussed the non-
limiting case. Boivin presented a more-detailed
examination of the nonlimiting case, predicting ex-
cess flux because of diffraction in most practical sit-
uations.4 He used detailed formulas for the flux
pattern derived originally by Lommel.5 Boivin also
considered the problem of a nonlimiting aperture and
an extended source.6

It is worthwhile to reexamine such issues, espe-
cially because common formulas used to estimate dif-
fraction errors work to disparately different degrees
in various situations. Revised formulas that esti-
mate errors more reliably would be particularly help-
ful. Conversely, a detailed numerical evaluation of
the diffraction errors, at least within the Kirchhoff
formulation, is now often practical, and the present
author has developed several programs to do just
this. Assessment of the reliability of such programs
1 October 1998 y Vol. 37, No. 28 y APPLIED OPTICS 6581
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would be enhanced by a more-detailed means of
comparing numerical and analytical formulas for dif-
fraction errors, an objective for this author. Fur-
thermore, such formulas play a special role in
practice because they are often accurate when nu-
merical work is impractical, e.g., for small l.

In this study, therefore, revised formulas are de-
ived for diffraction errors; these formulas have
orked as well as, or better than, the formulas cited
bove in all cases examined. But these formulas
lso have a limited range of applicability, and the
ursuit of formulas that are robust in a wider range
f applications seems difficult. For the case of a
oint source the formulas are relatively complete,
nd their generalization to cases of extended sources
s also derived. Intrinsic inaccuracies of the formu-
as are not given, because several of the approxima-
ions used in their derivation can each prove
mportant, depending on the situation. ~So a formu-
a’s validity is best assessed in practice.!

Establishing the validity of the Fresnel and parax-
al approximations is a prerequisite to this study.
iven these prerequisites, a preliminary expression

or spectral power incident upon the detector is de-
ived in Section 2. This expression depends on the
ource spectral radiance, the geometry considered,
nd Lommel’s results; although it is an integral ex-
ression, its evaluation entails only a single ~i.e., one-
imensional! integration. The relevant integrand
an be related to the spectral power incident upon a
etector in the case of a point source. Helpful ap-
roximations for this integrand are derived in Section
. In Section 4 the results of Sections 2 and 3 are
ombined to produce explicit ~already integrated! ex-

pressions for the spectral power in cases of extended
sources. Each of these geometry-dependent expres-
sions can be written in closed form while validity is
maintained over a wide range of circumstances.
Otherwise, the results of Section 3 vastly simplify the
integration indicated in Section 2, so diffraction er-
rors can be estimated easily in all cases. The results
are demonstrated in Section 5 for several types of
situation. The presentation of conclusions and a
technical appendix form the balance of this paper.

2. Fresnel Diffraction by a Circular Aperture for an
Extended Source

A source–aperture–detector configuration, for which
diffraction effects are considered here, is specified by

Fig. 1. Schematic diagram of the source–aperture–detector setup
with relevant dimensions labeled. Angles subtended by the
source and the detector are indicated. The particular setup
shown features a nonlimiting aperture.
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source radius rs, aperture radius R, source–aperture
distance ds, detector radius rd, and aperture–
detector distance dd ~Fig. 1!. Given the spectral ra-

iance of the source, Ll~l!, the spectral radiant flux
incident upon the detector, Fl~l!, can in principle be
found. It is helpful to introduce three parameters,
which are given by

u 5
2p

l
R2 S1

ds
1

1
dd
D, vs 5

2p

l

Rrs

ds
,

vd 5
2p

l

Rrd

dd
. (1)

The angles subtended at the aperture by the source
and the detector, which have the ratio ~2rsyds!y~2rdy
dd! 5 vsyvd, will generally not be equal, and it is
convenient to define two new variables, which are
given by

v0 5 Max~vs, vd!, s 5
Min~vs, vd!

Max~vs, vd!
. (2)

Of the angle subtended by the source and the angle
subtended by the detector, the larger is

C 5
lv0

pR
. (3)

The condition of having a defining aperture, such that
the geometrical throughput of the configuration is
specified by the aperture in combination with either
the source or the detector, is expressed by the relation

u , ~1 2 s)v0 5 uvs 2 vdu. (4)

The condition of having a nonlimiting aperture is
expressed by the relation

u . ~1 1 s!v0 5 vs 1 vd. (5)

Henceforth it is assumed that one or the other con-
dition is true.

For convenience, the center of the aperture is de-
fined as the origin and the z axis is chosen as the
optical axis. For two points, rs 5 ~xs, ys, 2ds! on the
source and rd 5 ~xd, yd, dd! on the detector, the line
segment connecting these points intersects the x–y
plane at a point rM 5 ~xM, yM, 0!, which implicitly
depends on rs and rd. Define f ~rs, rd! through

f ~rs, rd! 5
ÎxM

2 1 yM
2

R
. (6)

Using Lommel’s solution for the Fresnel diffraction in
the paraxial approximation by a circular aperture, we
can write

Fl~l! 5
Ll~l!

~ds 1 dd!
2 *

Source

d2rs *
Detector

d2rd

3 ua@u, f ~rs, rd!u#u2. (7)
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If we simplify notation by defining v 5 f ~rs, rd!u, ua~u,
v!u2 is most conveniently given by

ua~u, v!u2 5 5
1 1 V0

2~u, v! 1 V1
2~u, v!

2 2V0~u, v!cos1u 1
v2

u
2

2
2 2V1~u, v!sin1u 1

v2

u
2

2 v , u

U1
2~u, v! 1 U2

2~u, v! v . u

. (8)

Lommel functions V and U are given by

Un~u, v! 5 (
s50

`

~ 2 !sSu
vD

n12s

Jn12s~v!,

Vn~u, v! 5 (
s50

`

~ 2 !sSv
uD

n12s

Jn12s~v!, (9)

where the J cylindrical functions are Bessel func-
tions.

Integrations over rs and rd can best be carried out
in cylindrical polar coordinates rs9, rd9, us, and ud,
where we have rs 5 ~rs9 cos us, rs9 sin us, 2ds!, etc.
The result is

Fl~l! 5
Ll~l!

~dd 1 ds!
2 *

0

rs

drs9rs9 *
0

2p

dus *
0

rd

drd9rd9

3 *
0

2p

dudua@u, f ~rs, rd!u#u2

5
2prs

2rd
2

~ds 1 dd!
2

Ll~l!

s2 *
0

s

ds9s9 *
0

1

dzz

3 *
0

2p

duua@u, v0~s92 1 z2 2 2zs9 cos u!1y2#u2.

(10)

@In the last step, one angular integration can be elim-
inated because of cylindrical symmetry; integration
over the dimensionless s9~z! is a reexpression of the
radial integration for the end optic subtending a
smaller ~larger! angle at the aperture. Rearrange-
ment of the second argument of a is found from geo-
metric considerations.# If we introduce the new
function

I~u, v, t! 5 *
0

t

dt9t9ua~u, vt9!u2 5
1
v2 *

0

vt

dv9v9ua~u, v9!u2,

(11)
we can derive a more useful expression:

Fl~l! 5
2prs

2rd
2Ll~l!

~ds 1 dd!
2 *

21

1

dx
I~u, v0, 1 1 sx!

1 1 sx

3 $~1 2 x2!@~2 1 sx!2 2 s2#%1y2, (12)

as is demonstrated in Appendix A.
Thus the evaluation of Fl~l! requires only a single

integration of an ostensibly known integrand. This
integration can be surprisingly easy and accurate,
whether it is carried out numerically or ~albeit ap-
proximately! analytically. Meanwhile, without dif-
fraction we have

Fl
~0!~l!unonlim. 5

p2rs
2rd

2Ll~l!

~ds 1 dd!
2

Fl
~0!~l!ulim. 5

p2s2R2C2Ll~l!

4
5

u2

v0
2

p2rs
2rd

2Ll~l!

~ds 1 dd!
2
6

(13)

for the nonlimiting and the limiting cases, respec-
tively.

3. Formulas for I~u, v0, t!

I~u, v0, t!, defined in Eq. ~11!, is closely related to the
otal flux incident upon a detector in the case of a
oint source on the z axis behind an aperture. Be-
ow, approximate formulas for I~u, v0, t! are given,

and these formulas pertain to the cases of ~1! a large
onlimiting aperture ~baffle!, ~2! a large defining ap-
rture, and ~3! a pinhole defining aperture. Several
pproximations for I~u, v0, t! in the nonlimiting case
ave been analyzed by Boivin.4 The formula found

here is less compact than those presented by Boivin
because it retains more contributions, which the
present author has found widens its scope of appli-
cability considerably. Formulas for I~u, v0, t! for
arge and pinhole defining apertures have been taken
rom Steel et al.3 and from Born and Wolf.7

A. Large Nonlimiting Aperture

For a large nonlimiting aperture one has v0t , u for all
t of interest, so the formula v , u for a~u, v! is preferred.

hen the asymptotic formula for Bessel functions,

Jm~v! , Î 2
pv

cosSv 2
mp

2
2

p

4D , (14)

is used, approximate forms for V0 and V1 become, for
vyu sufficiently smaller than 1:

V0~u, v! < Î 2
pv

cos~v 2 py4!

1 2 v2yu2 , 1 ,, v , u,

V1~u, v! < Î 2
pv

v
u

sin~v 2 py4!

1 2 v2yu2 , 1 ,, v , u. (15)
1 October 1998 y Vol. 37, No. 28 y APPLIED OPTICS 6583
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Substitution of relations ~15! into Eq. ~11! permits
us to write

I~u, v0, t!u1,,v0t,u <
1

v0
2 *

0

v0t

dv9v9

3 H1 1
1

pv9F 1 1 v92yu2

~1 2 v92yu2!2G
1

1
pv9

sin~2v9!

1 2 v92yu2

2 Î 2
pv9

cos@~u 1 v9!2y~2u! 2 py4#

~u 1 v9!yu

2 Î 2
pv9

cos@~u 2 v9!2y~2u! 1 py4#

~u 2 v9!yu J .

(16)

his integrand is a poor approximation for small v9,
ut the resultant error is minimal. Of the five
erms in braces in the integrand, contributions from
he first two can be integrated exactly. Contribu-
ions from the third term prove to be small, because
f the oscillatory nature of that term, and are ne-
lected. Although the remaining two terms are
lso oscillatory, the oscillations are not periodic,
nd the terms are weighted by a lower inverse
ower of v9 than is the second or the third term. In
ractice, the last two terms prove to be important,
ut their contributions to the integral can be rep-
esented only approximately. Expressions for
heir contributions have been arrived at here
hrough integration by parts, during which the trig-
nometric functions were one of the two factors in
he integrand. Hence the terms being neglected
re of higher inverse powers of u or v0. Thus I~u,
0, t! is approximated by
n expression that, besides having the shortcomings
lready mentioned, neglects integration constants re-
ated to the v9 5 0 limit of integration. The results

presented below suggest that such contributions are
small.
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B. Large Defining Aperture

For a large defining aperture one requires I~u, v0, t!
only for v0t . u, and it is convenient to write

I~u, v0, t!u1,,u,v0t 5
1

v0
2 F*

0

`

dv9v9ua~u, v9!u2

2 *
v0t

`

dv9v9ua~u, v9!u2G
<

1
v0

2 Fu2

2
2 *

v0t

`

dv9v9ua~u, v9!u2G .

(18)

This approximation replaces the actual diffraction
loss with the difference between such a loss and the
analogous loss for an arbitrarily large v0. Because
he latter loss is much smaller, this replacement is
cceptable.
Again using the asymptotic form of Bessel func-

ions, we find that

U1~u, v! < Î 2
pv

u
v

sin~v 2 py4!

1 2 u2yv2 ,

U2~u, v! < 2Î 2
pv Su

vD
2 cos~v 2 py4!

1 2 u2yv2 , (19)

which leads to the approximation cited by Steel et al.3
Their approximation was perhaps misprinted and ap-
pears here as:

I~u, v0, t!u1,,u,v0t <
u2

2v0
2 F1 2

2v0t

p~v0
2t2 2 u2!

1
cos~2v0t!

p~v0
2t2 2 u2!

1 . . . G . (20)
C. Pinhole Defining Aperture

The Fraunhofer result for a pinhole aperture is
well known and can be found, for instance, in Born
and Wolf.7 In the present notation this result is
I~u, v0, t!u1,,v0t,u <
t2

2
1

u2t

pv0~u
2 2 v0

2t2!
2

u2

v0
2 Î2v0t

p

sin@~u 1 v0t!2y~2u! 2 py4#

~u 1 v0t!2 1
u3

v0
2 Î2v0t

p
cosF~u 1 v0t!2

2u
2

p

4G
3 F1

2
~u 1 v0t!4 2

1
2v0t~u 1 v0t!3G 1

u2

v0
2 Î2v0t

p

sin@~u 2 v0t!2y~2u! 1 py4#

~u 2 v0t!2 1
u3

v0
2 Î2v0t

p

3 cosF~u 2 v0t!2

2u
1

p

4G F2
2

~u 2 v0t!4 2
1

2v0t~u 2 v0t!3G , (17)



M
a

T
w
e
t
o
a
d
w

a
r

written as

I~u, v0, t!upinhole <
u2

2v0
2 @1 2 J0

2~v0t! 2 J1
2~v0t!#. (21)

Simple approximations to the bracketed term can
yield a more convenient form for relation ~21!. For
instance, a relative error of less than 0.01 is achieved
with the substitution, for an arbitrary argument x,

1 2 J0
2~x! 2 J1

2~x!

< 5
x2

4
2

x4

32
1

5x6

2304
2

7x8

73728
1

7x10

2457600
x , 2.67

1 2
2

px
1

cos~2x!

px2 x $ 2.67
.

(22)

ore-accurate but more-complicated approximations
re also available.

4. Expressions for Diffraction Errors

It is convenient to specify a diffraction error in terms
of the ratio of the actual flux incident upon the de-
tector to the flux that would be incident without dif-
fraction. This ratio is F1 for defining apertures and
F2 for nonlimiting apertures. Correcting a measure-
ment for diffraction involves division of the measured
flux by F1 or F2, which are

F1~u, v0, s! 5
1
p *

21

1

dx
$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 1 sx

3 F2v0
2I~u, v0, 1 1 sx!

u2 G , (23)

F2~u, v0, s! 5
1
p *

21

1

dx
$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 1 sx

3 @2I~u, v0, 1 1 sx!#. (24)

If suitably accurate explicit expressions for such in-
tegrals are not available, Gauss–Chebyshev quadra-
ture permits efficient numerical integration based on
this formula for smooth f ~x!:

1
p *

21

1

dxÎ1 2 x2 f ~x! <
1
N (

k51

N

fFcosSp
2k 2 1

2N DG
3 sin2Sp

2k 2 1
2N D . (25)

he author has found that, if such quadrature is not
ell converged for N . 12, approximate analytical

xpressions estimate the integrals reasonably, and
hese expressions are derived below. That is, rec-
mmendations for how to combine Eqs. ~23! and ~24!
nd the results of Section 3 are given for estimating
iffraction effects in cases of extended sources,
hereas F1 and F2 are simply the last quantity in

brackets in each of Eqs. ~23! and ~24! for point sources
located on the optic axis.
A. Large Nonlimiting Aperture

We can reexpress the results of Eq. ~17! in the abbre-
viated form for the integrand in Eq. ~24! through the
definition

$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 1 sx
2I~u, v0, 1 1 sx!

5 $~1 2 x2!@~2 1 sx!2 2 s2#%1y2~1 1 sx!

1
2u2

pv0

$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

u2 2 v0
2~1 1 sx!2

1 Î1 2 x2 @A1~x!sin u1 1 A2~x!cos u1

1 A3~x!sin u2 1 A4~x!cos u2#. (26)

Here we have

u6 5 Su 6 v0

Î2u
6

v0s

Î2u
xD2

7
p

4
, (27)

and A1~x!–A4~x! are given by

A1~x! 5 2
2u2

v0
2 F2v0~1 1 sx!

p G1y2

3
@~2 1 sx!2 2 s2#1y2

~1 1 sx!@u 1 v0~1 1 sx!#2 (28)

nd so forth. It is helpful in introduce the six pa-
ameters

a9 5 2
v0s

u 1 v0
, b9 5

v0s

u 2 v0
,

a 5
1 2 Î1 2 a92

a9
, b 5

1 2 Î1 2 b92

b9
,

s 5
s

4 2 s2 , S 5
21 1 Î1 2 4s2

2s
, (29)

as well as the functional

I2@A, a, b, c# 5
1
p *

21

1

dxÎ1 2 x2

3 exp$i@~a 1 bx!2 1 c#%A~x! (30)

and the function

I3~u, v0, s! 5
1
p *

21

1

dx
$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

u2 2 v0
2~1 1 sx!2 .

(31)
1 October 1998 y Vol. 37, No. 28 y APPLIED OPTICS 6585
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In Appendix A approximate formulas for I2 and I3 are
erived for arguments of interest. For a . ubu . 0
nd uabu .. 1 we have

2@A, a, b, c# <
exp@i~a2 1 b2 1 c!#

4Îpuabu3y2

3 HsinS2uabu2
p

4DFS a
a 1 bD

3y2

A~1! 1 S a
a 2 bD

3y2

A~21!G
2 i

ab
uabu

cosS2uabu2
p

4DFS a
a 1 bD

3y2

A~1! 2 S a
a 2 bD

3y2

3 A~21!GJ . (32)

Likewise, we have

I3~u, v0, s! < 2
Î4 2 s2

2uv0s
F~a 2 b!S1 1

s2

8 D
1 s~a2 2 b2!S1 2

s2

8 D2
s2~1 1 S2!

8

3 S a

1 2 aS
2

b

1 2 bSDG . (33)

Relations ~32! and ~33! yield

F2~u, v0, s! < 1 1
2u2

pv0
I3~u, v0, s!

1 ImFI2SA1,
u 1 v0

Î2u
, 1

v0s

Î2u
, 2

p

4DG
1 ReFI2SA2,

u 1 v0

Î2u
, 1

v0s

Î2u
, 2

p

4DG
1 ImFI2SA3,

u 2 v0

Î2u
, 2

v0s

Î2u
, 1

p

4DG
1 ReFI2SA4,

u 2 v0

Î2u
, 2

v0s

Î2u
,1

p

4DG . (34)

This relation becomes quite accurate for the combi-
nation of a short wavelength and large s, the case for
which quadrature is most difficult. Therefore
quadrature and use of the above result constitute
complementary techniques.

B. Large Defining Aperture

The same can be said about the result derived in this
subsection that has been said about relation ~34!.

he same function I3 is useful, as is a functional
I1@B~x!, a#, which is defined in Eq. ~A7! below and for
which an explicit expression valid for large uau is given
in relation ~A13!. We can reexpress the results of
586 APPLIED OPTICS y Vol. 37, No. 28 y 1 October 1998
relation ~20! in the abbreviated form for the inte-
grand in Eq. ~23! as follows:

$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 1 sx
2v0

2I~u, v0, 1 1 sx!

u2

<
$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 1 sx

1
2v0$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

p@u2 2 v0
2~1 1 sx!2#

1 Î1 2 x2 B~x!cos~2v0 1 2v0sx!, (35)

where we have

B~x! 5
@~2 1 sx!2 2 s2#1y2

p@v0
2~1 1 sx!2 2 u2#~1 1 sx!

. (36)

Therefore we have

F1~u, v0, s! < 1 1
2v0

p
I3~u, v0, s!

1 cos~2v0!Re@I1~B, 2v0s!#

2 sin~2v0!Im@I1~B, 2v0s!#. (37)

C. Pinhole Defining Aperture

To find F1 in the case of a pinhole defining aperture
we can use either the u3 0 limit of Subsection 4.B if

0~1 2 s! is sufficiently large or else the suggested
numerical quadrature, based on applying relations
~21! and ~22! to Eq. ~23!.

5. Demonstration Applications

One example of the diffraction effects of nonlimiting
apertures is taken from a set of geometries consid-
ered by Boivin.8 The merits of using toothed aper-
tures ~instead of circular apertures! to reduce

iffraction effects were demonstrated there and sub-
equently modeled in Ref. 9. Here we consider
even of the geometries with circular apertures,
hich are specified in Table 1. Resultant values of
2 are shown ~for l 5 0.58 mm! in Table 2. The
esults in the second column of Table 2 were found
rom the standard approximation4:

F2 < 1 1
2

pv0
. (38)

Table 1. Parameters That Specify the Geometries Used in Ref. 8

Geometry

Values of These Parameters

rs ~mm! ds ~mm! R ~mm! rd ~mm! dd ~mm!

1 0.5 500 3.5 1.25 500
2 0.5 500 7.5 1.25 500
3 0.5 850 3.5 1.60 400
4 0.5 500 3.5 1.25 850
5 0.5 650 3.5 1.25 700
6 0.5 800 3.5 1.25 550
7 0.5 950 3.5 1.25 400
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Table 2. F for Geometries Indicated in Table 1 at l 5 0.58 mma
The third and fourth columns show F2 obtained in the
Fresnel approximation, given a point source and the
actual extended source, respectively. However, re-
sults for the point source omit the effects of the last
two terms in the expression v , u in Eq. ~8!. These
effects are large and rapidly oscillatory with l, so
they are largely self-canceling for broadband sources
as well as for extended sources. The fifth column
shows results found from relation ~34!. Finally, the
last column shows results obtained in two separate
calculations that went beyond the Fresnel approxi-
mation, one of which is found in Ref. 9. The efficacy
of relation ~34! is clearly demonstrated.

Likewise, recent measurements at the National
Institute of Standards and Technology of black-
body radiance have involved a fully illuminated,
.4.516- mm-radius defining aperture separated by
1116.56 mm from a 14.97-mm-radius defining aper-
ture placed in front of a radiometer. To reduce stray
light and for other reasons, two 15.835-mm-radius
baffles were placed 494.84 mm ~Baffle A! and 960.98
mm ~Baffle B! from the 4.516-mm-radius aperture.
Some diffraction loss was incurred because of this
aperture, but we now consider only the diffraction
effects of the baffles. To do this, we treat the 4.516-
mm-radius aperture as an extended Lambertian
source. For Baffle A, relation ~34! has proved useful
for all l # 50 mm, the longest wavelength that we
consider. For Baffle B, relation ~34! breaks down for
larger l in this range, but 12-point quadrature has
proved adequate at such wavelengths. In Fig. 2 the
results for the relative excess flux divided by the
wavelength are shown for both baffles. Results
found from calculations done in the Fresnel approx-
imation are shown by solid curves. This approxima-
tion works adequately for the geometries considered.
Results from relation ~34! ~long-dashed curve! and
from the quadrature ~short-dashed curve! are also
shown.

Steel et al.3 analyzed F1 for situations involving
extended sources that modeled diffraction in geome-
tries used by Blevin and Brown.10 Nine combina-
tions of parameters u, v0, and v0s ~to use the present

2

Geometry

Values of F2 Found for These Cases

Relation
~38!

Fresnel

Relation
~34!

Detailed
Calculation

Point
Source

Extended
Source

1 1.00672 1.00692 1.00683 1.00683 1.00682
2 1.00313 1.00316 1.00309 1.00309 1.00310
3 1.00420 1.00465 1.00464 1.00461 1.00464
4 1.0114 1.0116 1.0110 1.0109 1.0110
5 1.0094 1.0098 1.0095 1.0095 1.0095
6 1.0074 1.0078 1.0077 1.0076 1.0077
7 1.0054 1.0057 1.0057 1.0058 1.0057

aFound by use of relation ~38!, for a point source and for the
extended source in the Fresnel approximation, by use of relation
~34!, and as found in more-detailed numerical approximations.
notation! were considered. These are listed in Table
. Also shown are values for F1 obtained from rela-

tion ~20! and the formula of Steel et al.:

F1~u, v0, v0s! < 1 2
1

2pv0s
lnFv0

2~1 1 s!2 2 u2

v0
2~1 2 s!2 2 u2G (39)

and as found from relation ~37! and numerical calcu-
ations done in the Fresnel approximation. The last
hree results agree adequately, with relation ~37! ad-
ering most closely to the detailed numerical results.
Diffraction in one recently encountered setup in-

olving pinholes11 could be modeled by consideration
of a 1.778-mm-radius extended source separated by
150 mm from a 6.35-mm-radius detector. Pinhole
defining apertures with radii of 52 and 101 mm were
placed 23 mm from the source, and diffraction losses
because of these apertures were of concern. The re-
sultant values of F1 found by 12-point Gauss–
Chebyshev quadrature and relations ~21! and ~22! are

Fig. 2. @Fl~l! 2 Fl
~0!~l!#y@~lymm!Fl

~0!~l!#, or the relative excess
pectral flux divided by wavelength that results from two baffles
iscussed in the text, as found by numerical calculations carried
ut in the Fresnel approximation ~solid curves!, from relation ~34!
long-dashed curve!, and from 12-point quadrature ~short-dashed

curve!.

Table 3. Geometry Parameters and F1 for Nine Examples of
Limiting Aperturesa

Geometry Parameter Values of F1 for These Cases

u v0 v0s
Relation

~20!
Relation

~39!
Relation

~37! Numerical

65 153 35 0.99492 0.99470 0.99470 0.99470
84 299 35 0.99769 0.99767 0.99767 0.99766

216 940 35 0.99929 0.99928 0.99928 0.99929
113 202 46 0.99541 0.99502 0.99506 0.99506
146 394 46 0.99812 0.99811 0.99811 0.99811
376 1240 46 0.99943 0.99943 0.99943 0.99944
175 252 57 0.99512 0.99394 0.99417 0.99422
225 490 57 0.99836 0.99833 0.99833 0.99834
582 1540 57 0.99952 0.99952 0.99952 0.99952

aResults are presented as found for relations ~20!, ~39!, ~37!, and
numerical results carried out in the Fresnel approximation.
1 October 1998 y Vol. 37, No. 28 y APPLIED OPTICS 6587
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Table 4. F for Two Apertures Found from Simplified Formulas

6

listed in Table 4, as are values of F1 found by detailed
calculations with the Fresnel approximation. In
particular, the ratio of the spectral flux incident upon
the detector for the two pinholes was of interest, and

calculated results shown here mimicked experiment
in a reasonable fashion11 but with deviations toward
longer wavelength, perhaps because of finite aper-
ture thickness.

6. Conclusions

Diffraction by a circular aperture has been analyzed,
with the explicit goal of determining diffraction ef-
fects on the spectral flux incident upon a detector for
the cases of point and extended sources. Toward
this goal, approximate expressions describing the ef-
fects of diffraction have been obtained. In many in-
stances these expressions have been given in closed
form, whereas in other circumstances they have been
given in a form whose evaluation requires a practi-
tioner to perform one simple integration as indicated.
Whereas the resultant formulas are slightly more
complicated than those presented in the past, they
should also have a considerably wider applicability.
The results should be most helpful in cases of short
wavelength and are therefore complementary to the
results obtained in the long-wavelength case within
the geometrical theory of diffraction.12 Formulas
have been presented for cases of large nonlimiting ap-
ertures, large limiting apertures, and pinhole limiting
apertures, and their efficacy was assessed for several
geometries of interest in practical radiometry.

1

Discussed in the Text and Detailed Calculations Using the Fresnel
Approximation for Two Different Pinhole Apertures R

l ~mm!

F1, R 5 52 mm F1, R 5 101 mm

This Study Fresnel This Study Fresnel

5 0.848 0.847 0.921 0.920
10 0.650 0.648 0.843 0.841
15 0.449 0.449 0.742 0.740
20 0.305 0.305 0.637 0.635
25 0.214 0.214 0.530 0.529
30 0.157 0.157 0.433 0.433

E~s, t! 5 5
ps2

p~1 2 t!2 1 2 *
12t

s

ds9s9 a

2 *
t21

s

ds9s9 arccosSs92 1

2

0
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Appendix A

Equation ~12! can be derived as follows: We simplify
Eq. ~10! by considering the fraction of a circle with
radius t that is inside a unit circle when the distance
etween the circles’ centers is s9. Define this frac-
ion as C~s9, t!, which is normalized so that C~s9, t! is

1 when the radius t circle in wholly contained within
the unit circle. Equation ~10! can be rewritten as

Fl~l! 5
2prs

2rd
2

~ds 1 dd!
2

Ll~l!

s2 *
0

`

dttua~u, v0t!u2E~s, t!, (A1)

where E~s, t! is defined by

E~s, t! 5 2p *
0

s

ds9s9C~s9, t!, (A2)

and it is given by
It is convenient to write

*
0

`

dttua~u, v0t!u2E~s, t!

5 *
0

`

dtFdI~u, v0, t!

dt GE~s, t!

5 *
0

`

dtI~u, v0, t!F 2
dE~s, t!

dt G , (A4)

where Eq. ~11! and integration by parts have been
used, exploiting the fact that

I~u, v0, 0! 5 E~s, `! 5 0. (A5)

Differentiating Eq. ~A3! with respect to t and evalu-
ting necessary integrals, we find that

2
dE~s, t!

dt

5 5st $~1 2 x2!@~2 1 sx!2 2 s2#%1y2 1 2 s , t , 1 1 s

0 otherwise
,

(A6)
t , 1 2 s

rccosSs92 1 t2 2 1
2ts9 D 1 2 s # t , 1

t2 2 1
ts9 D 1 # t , 1 1 s

t $ 1 1 s

. (A3)
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where x is implicitly defined by t 5 1 1 sx. This
result can also be deduced from geometrical consid-
erations.

Approximate expressions for integrals in relations
~34! and ~37! can be arrived at as follows: To obtain
I1 for any smooth f ~x! and uau .. 1, rewrite it as

I1@ f, a# 5
1
p *

21

1

dxÎ1 2 x2 exp~iax! f ~x!

5
1
p (

m50

`

~2 2 dm0! *
0

p

du cos~mu!imJm~a!

3 ~1 2 x2! f ~x!, (A7)

with u and x related by x 5 cos u. With the expan-
sion

D~u! 5 ~1 2 x2! f ~x! 5 f ~x!sin2u 5 (
m50

`

cos~mu!Dm,

(A8)

Eq. ~A7! is rewritten as

I1@ f, a# 5 (
m50

`

imJm~a!Dm. (A9)

Analysis of D~u! yields

(
m50

`

~61!mDm 5 @~1 2 x2! f ~x!#x561 5 0, (A10)

(
m50

`

~61!mm2Dm 5 H2
]2

]u2 @ f ~x!sin2u#J
x561

5 22f ~61!. (A11)

Likewise, expansion of Jm~uau! for large uau yields

Jm~uau! < Î 2
puau FcosSuau 2

mp

2
2

p

4D
2

~m2 2 1y4!

2uau
sinSuau 2

mp

2
2

p

4DG ; (A12)

the remaining terms can be neglected for sufficiently
large uau. On substitution of relation ~A12! into Eq.
~A9!, the sum rule @Eq. ~A10!# causes contributions
with prefactors of order m0 to cancel in I1, whereas
Eq. ~A11! renders a simple expression for contribu-
tions with prefactors of order m2. Using I1@ f, a# 5
I1*@ f, 2a#, we obtain, for all uau .. 1,

I1@ f, a# <
1

2uau Î 2
puau HsinSuau 2

p

4D@ f ~1! 1 f ~21!#

2 i
a
uau

cosSuau 2
p

4D@ f ~1! 2 f ~21!GJ . (A13)
This result is helpful when one is evaluating ~for
smooth g!

I2@g, a, b, c# 5
1
p *

21

1

dxÎ1 2 x2

3 exp$i@~a 1 bx!2 1 c#%g~x!. (A14)

To that end, change the variable of integration to

a 5 ~a 1 bx!2, (A15)

so a and x are further related by

x 5
a1y2 2 a

b
, dx 5

da

2ba1y2 , (A16)

which yields

I2@g, a, b, c# 5
eic

2pb*
~a2b!2

~a1b!2 da

a1y2
Î1 2 x2 eiag~x!. (A17)

Then, define x9 so that a and x9 are related by

a 5 a2 1 b2 1 2abx9, x9 5
a 2 a2 2 b2

2ab
. (A18)

2 simplifies to

I2@g, a, b, c# 5 exp@i~a2 1 b2 1 c!#
1
p *

21

1

dx9Î1 2 x92

3 exp~2iabx9! f ~x9!

5 exp@i~a2 1 b2 1 c!#I1@ f, 2ab#, (A19)

where f ~x9! is given by

f ~x9! 5
ag~x!

a1y2 S1 2 x2

1 2 x92D1y2

. (A20)

In particular, we have

f ~61! 5 S a
a 6 bD

3y2

g~61!. (A21)

The resulting I2 is valid for all u2abu .. 1 that satisfy
. ubu.
Using the values of a9 and b9 specified by Eqs. ~29!

ermits the integral in Eq. ~31! to be rewritten as
ollows: By the relations

1
u2 2 v0

2~1 1 sx!2 5
1

~u2 2 v0
2!~a9 2 b9!

3 S a9

1 2 a9x
2

b9

1 2 b9xD
5 2

1
2uv0s

S a9

1 2 a9x
2

b9

1 2 b9xD ,

(A22)
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we can rewrite

I3@u, v0, s# 5
1
p *

21

1

dx
$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

u2 2 v0
2~1 1 sx!2

5 2
K~a9! 2 K~b9!

2uv0s
, (A23)

where K is defined by

K~a9! 5
1
p *

21

1

dx
a9$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

1 2 a9x

5
2a

p *
21

1

dx$~1 2 x2!@~2 1 sx!2 2 s2#%1y2

3 (
n50

`

anJn~x!. (A24)

Here Jn denotes a Chebyshev polynomial of the sec-
ond kind, and a is given by Eqs. ~29!.

Using the shorthand

y 5 sx 5
sx

4 2 s2 , (A25)

where s is defined in Eqs. ~29!, we can rewrite

@~2 1 sx!2 2 s2#1y2 5 $~4 2 s2!@~1 1 2y!2

2 s2y2#%1y2 5 Î4 2 s2

3 S1 1 2y 2
s2y2y2
1 1 2y

1 . . . D . (A26)

Additional terms in the rightmost expression are
weighted by ascending powers of s4. Therefore re-
taining only the terms shown is usually an acceptable
approximation.

Rearrangement of terms in the right-most expres-
sion gives

@~2 1 sx!2 2 s2#1y2 < Î4 2 s2 FS1 1
s2

8 D J0~x!

1 sS1 2
s2

8 D J1~x! 2
s2

8

3 ~1 1 S2! (
`

SnJn~x!G , (A27)

n50
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where S is given by Eqs. ~29!. Substitution of rela-
ion ~A27! into Eq. ~A24! yields

K~a9! < aÎ4 2 s2 F~1 1 s2y8! 1 sa~1 2 s2y8!

2
s2~1 1 S2!y8

1 2 aS G . (A28)

Using the analogous expression for K~b9! completes
the derivation of relation ~33!. The utility of using
relation ~A27! is aided by the ~1 2 x2!1y2 weight in Eq.
~31!, because the approximation made is the poorest
for low x. This approximation becomes exact for s3
0 and degrades with increasing s. One may have s
as large as 1 for a nonlimiting aperture, whereas s3
1 in the case of a limiting aperture can occur only in
the case of a pinhole aperture. In that case relation
~33! may be unsuitable anyhow. For a nonlimiting
aperture, s 5 1 implies u $ 2v0. In that case, when
relation ~33! is used the relative error in I3 is at most
;0.01.
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