
Integrating sphere simulation:
application to total flux scale realization

Y. Ohno

A method is proposed for realizing the total flux scale of light sources by use of an integrating sphere with
an opening to introduce a known amount of flux from a luminous intensity standard or a spectral
irradiance standard lamp placed outside the sphere. Computer simulations were made on several models
of an integrating sphere, designed to compare the total flux of a test lamp inside the sphere with the flux
introduced from an external source. I describe the theory and algorithm of the simulation, present the
results of the simulation for varying conditions of sphere geometry such as size and location of the baffles,
internal source, and wall reflectance, and predict that one of the models has sufficient accuracy to
calibrate lamps for total flux.

Key words: Calibration, computer simulation, integrating sphere, lumen, luminous flux, photometer,
photometry, radiant flux, ray tracing, scale, standards, total flux.

1. Introduction

The total luminous flux (lumen) is one of the most
important measured quantities for light sources.
The total luminous flux is usually measured at labora-
tories in industry by integration of sphere photom-
eters in comparison with standard lamps, whereas
the primary standards of the total luminous flux are
most often realized at national laboratories by gonio-
photometers. However, it is not always convenient
to build and maintain goniophotometers because they
require a large dark room space, a costly high-
precision moving mechanism, and long hours of
operation. Efforts continue to improve these require-
ments of goniophotometers as reported recently.1-3
Also, most goniophotometers need to rotate the lamp
to be measured around one axis or more, which may
cause another error for lamps that are sensitive to the
burning position or drafts.4 5 The shadow of their
lamp-rotating mechanism may also cause an error in
the measured total flux, which restricts the type of
lamp for flux standards. There is also an increasing
need for the spectral total-radiant-flux standards,6

but such inconveniences with goniophotometers make
the spectral measurements even more difficult.

Considering such problems, I investigated an alter-
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native method of realizing the total flux scale at the
National Institute of Standards and Technology.
This research is an attempt to calibrate the total flux
of a lamp inside an integrating sphere against the
known amount of flux coming into the sphere from an
external source. This new method has the potential
of generating a total (luminous or spectral) flux scale
through much simpler procedures and with better
accuracy. Two models of an integrating sphere have
been designed for this purpose. Each model consists
of an observation window, an opening to introduce
flux from an external source, a baffle between the test
lamp and the window, and another baffle between the
test lamp and the opening. To evaluate the perfor-
mance of the sphere models, a theoretical approach
has been taken.

General theories of integrating spheres were well
established, and various effects in integrating spheres,
except for baffles, were analyzed theoretically. 7-10
The effects of a baffle in an integrating sphere were
also analyzed theoretically and experimentally.1-' 6

Rotter,13 Brown,14 and de Visser and Van der Woude16
obtained the wall illuminance distribution of a sphere
with one baffle by numerical solutions of integral
equations by utilizing the axial symmetry of the
sphere geometry. These approaches, however, can-
not be applied to integrating spheres as designed in
this research, which include two baffles and two
openings located in axial asymmetry. Thus a com-
puter simulation based on the ray-tracing technique
has been applied for the integrating-sphere models
designed.

First the theory and algorithm of the computer
simulation are described. To verify the program,
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the results of the simulation for an integrating sphere
of the Ulbricht type (one baffle and one window) are
compared with those presented in previous papers.
Then the window illuminances of the designed sphere
models are computed for varying conditions such as
the size and location of the baffles, openings, a test
lamp, and the wall reflectance, and the calibration
errors are analyzed. Finally one geometry of an
integrating sphere that is most suitable for this
purpose is proposed.

2. Sphere Geometry for a New Method
of Total Flux Calibration

A. Requirements for the Geometry
The basic idea is to compare the total flux of a test
lamp inside the sphere with the known flux coming
into the sphere from a directionally calibrated stan-
dard lamp placed outside the sphere. To realize this
method, an integrating sphere should be designed
consisting of (1) a test lamp (internal source), (2) an
observation window, (3) an opening to introduce flux
from the standard lamp (external source), (4) a baffle
between the test lamp and the observation window,
and (5) a baffle between the test lamp and the opening
to prevent the direct light of the test lamp from
leaking out of the sphere.

Two basic models of an integrating sphere that
meet these requirements have been designed. Fig-
ure 1 shows the geometry of the first model (Model 1)
in which the opening is located 900 away from the
observation window. Figure 2 shows the geometry
of another model (Model 2) in which the opening is
located farther from the detector. Neither of these
models can be axially symmetric. In these models
the input flux cI, can be determined by

A = EA (1m), (1)

where E is the average illuminance (lux) at the
aperture plane, A is the area (square meters) of the
aperture. Assuming the sphere throughput is con-
stant, one obtains the total flux It of the test lamp by
measuring the window illuminances for st compared
with D,.

Measurements are to be made in turn when only
the test lamp is turned on and when only the external
standard lamp is turned on and the detector readings
in the two conditions are to be compared. There is
no need for an auxiliary lamp to correct the self-
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Fig. 1. Model 1 sphere geometry.
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Fig. 2. Model 2 sphere geometry.

absorption of the test lamp, which is a requirement in
the conventional substitution method, because the
test lamp is kept in the same place inside the sphere
when the measurement with the external source is
made. There is also no need for another baffle
between the observation window and the part of the
sphere wall that is directly illuminated by the exter-
nal source. In other words the detector must see the
first reflection of the external source because the
detector sees most of the first reflection of the test
lamp; the number of interreflections in the two
conditions must be balanced in this method. This
requirement is different from many other applica-
tions in which the detector is usually not exposed to
the directly illuminated area.

B. Sphere Geometry of the Simulation Model

Both Models 1 and 2 consist of the same objects; the
only difference between the two models is the location
and positioning of the objects. Therefore the equa-
tions and the algorithm for the computer-simulation
program need to be derived for only one sphere
geometry, which is shown in Fig. 3, in which a sphere
of radius R with an observation window (radius Rd),
internal source S1, external source S2, baffles B, and
B2, and an opening (radius Ro), is considered. Any
point on the sphere wall is defined by the polar
coordinate (0, A). Values D, D1, and D2 define the
positions of baffle B, and baffle B2. Angle shows
the tilt angle of baffle B2. Angle cz defines the
position of the opening. The reflectances are defined
as Pw for the sphere wall, Pd for the window and Pblu,

PblL, Pb2r, Pb2L for the surfaces of baffles B, and B2.
One can carry out simulations for either model by
using the same program with a different set of input
data (as discussed in Subsections 5.B and 5.C). One
can also use the same program for the conventional
Ulbricht-type sphere (as discussed in Subsection 5.A)
by giving such input data as R2 and Ro as zero.

3. Basic Equations

A. Illuminance Distribution on the Sphere Surfaces

In this subsection all surfaces are assumed to be
perfectly diffusing. The absorption and the reflec-
tion of light by the internal source are not considered.
Illuminance on each baffle surface is assumed to be
uniform over the area.
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Fig. 3. Parameters for the computer model:

Let us assume that W represents the surface of the
sphere of Fig. 3 including the surfaces of baffles Bi
and B2. Let Ei(a) be the reflected illuminance on a
given point a of Wafter the ith reflection and da be an
area element of W. Then Ei(a) is given by

Ei(a) = J (2)

where p(a) is the reflection factor at a, S(a, a') is the
screening factor whose value is either 1 or 0 depend-
ing on whether point a is seen from a'. T(a, a') is the
position factor that represents the distance factor
between a and a' and the cosine factor of a and a'.
On any point of the sphere wall, T(a, a') is 1/(4R2 ).
Equation (2) is based on the equation of Brown14 and
de Visser and van der Woude16 but is different in the
way that the direct illuminance from either source is
given as EO(a) , and another direct illuminance is not
considered until the reflected light by the first direct
illuminance is totally absorbed. E(a) is determined
by the angular intensity distribution of the internal
source or by the sphere geometry for introducing flux
from outside. As shown in Eq. (2), EO(a) produces
El(a), and then El(a) produces E2(a) and so on. The
final illuminance distribution E(a) on W is given by

(b) Other parameters

(a) dimensional parameters, (b) other parameters.

in terms of polar angle 0 and azimuth angle (f as
follows:

1 r2frs
Ej(0, E) = - JJ Ei_(0', 4')p(O',

X Sbl.(O, +X, 0 XV)

x Sb2W(0, , 0', Vf')sin 0'd0'd+'
+ PbluEi-,(blU)aTbluw(0, 4)/Tr

+ PblLEi-l(b1L)a1Tb1LW(0, 4)Sb2bl(0, k)/
+ Pb2rEij,(b2r)a2Tb2rw(0, t)/7r
+ Pb2 LEi-l(b2L)a 2 Tb2 Lw(0, ()Sblb 2 (0, )/'IT

(4)

R 2 r Er
Ei(blu) = Ejil(0 XfPwA

(5)x Tbl..(O', (+')sin W'dw'd(',

R 2 2a P
Ej(b1L) = -r ji E_,(0', -))pw(O' a)

x Sb2b(0', 4V)TbHLW(0, tf')sin 0'dO'dk'
+ Eji,(b2L)pb2 La2 Tb2 bl/rr, (6)

E(a) = E Ei(a). (3)
i=O

From this equation the final illuminance on any part
of the sphere wall, including that on the observation
window, which is our primary concern, can be ob-
tained.

To solve Eq. (2) numerically, the surfaces of the
baffles are separated from W, and Eq. (2) is redefined

R2 r21 7r
Ei(b2r) = £-f Ef _(0', ') p(O') v)

X Tb2rw(0', +')sin 0'd0'd+',

R2 2 o
Ei(b2L) = - Ejj(0', )p.(0', V')SbW2(0, )

x Tb2LW(0', ')sin 0'do'd4
+ Ei-l(b1L)PbLaTblb2/1T-

1 May 1994 / Vol. 33, No. 13 / APPLIED OPTICS 2639

17)

(8)

, \

p(a')Ejj(a')S(a, a')T(a, a')da',



Ei(blu), Ei(blL), E(b2r), and Ei(b2L) represent re-
flected illuminances after the ith reflection on the
upper side of B,, the lower side of B,, the right side of
B2, and the left side of B2, respectively. Only EblL

and Eb2L consider the illuminance and the screening
function of the other baffle because the two surfaces
face each other. In these equations I do not consider
the case where both surfaces of the baffle B2 face part
of baffle B,. SbW(0, 4), 0', 4)') is the screening func-
tion of B, seen from a point (0, 4)) on the wall, and
Sblb2(0, 4)) is that of B, seen from B2, a, and a2 are the
areas of one surface of B, and B2, respectively; pw(0, 4f)
is the reflectance of a point (0, 4)) on the wall including
the window surface Pd and the opening (zero reflec-
tance); Pblu, PbL, Pb2r, Pb2L are the reflectances of each
side of the baffles. Tbluw(0, 4)) is a function of the
position factor between the upper surface of B, and a
point (0, )) on the wall. The value of this function
will be zero for a point (0, 4)), which is behind that
surface of B,. Tblb2 and Tb2b, are the position factors
between B, and B2, the two values being the same.

All these screening functions and position factor
functions have been derived by geometrical calcula-
tions. The details of the derived equations are shown
in Appendix A. I did all calculations assuming the
illuminance on each surface of the baffles is uniform,
and the illuminance on each side of the baffle is
represented by the value on the geometrical center of
the baffle surfaces.

B.- Interreflection Window Illuminance Factor

Muroi~l analyzed an integrating sphere with one
baffle, introducing a factor K(0, 4)) that determines
the window illuminance from the flux of a sharp light
beam incident only around point (0, 4)). The re-
search of de Visser and van der Woude16 was also
based on the concept of this factor. In this paper
K(0, 4)) is called the interreflection window illumi-
nance factor. One can analyze in detail the perfor-
mance of any integrating sphere by looking into this
factor. K(0, 4)) can be calculated with Eq. (3) as
follows:

K(0, Ei) = j E(O, )/IDb (x/lm), (9)

where Eo(0', 4)') = Fb/da at (0, 4)), and Eo(0', 4') = 0
at another part of the sphere wall, da being the area of
the element on which the beam is incident and (b the
beam flux. A light source with any angular intensity
distribution (0, 4)) can be considered to consist of a
large number of such sharp beams. The window
illuminance E is then

= f K(0, 4)I(0, 4))sin OdOd4). (10)

perfectly proportional to the total flux of the light
source, whatever I(0, 4)) may be. For an ideal sphere
K(0, 4)) is equal to p,/[4,rR 2 (1 - p )], where Pw is the
wall reflectance and Px is the average reflectance of
the sphere surfaces including the window and the
opening. Any variation of values of K(0, 4)) causes
errors associated with the angular intensity distribu-
tion of the source.

4. Computer-Simulation Model

A. Approach

The approach of this computer simulation is basically
to compute Eqs. (3)-(8) numerically. Because of the
lack of axial symmetry, the sphere is divided into
many small sections defined by 0 and ). One calcu-
lates the illuminance of each section one reflection
after another by totaling the illuminances produced
by all the sections of the sphere surfaces including
each surface of B, and B2, taking the screening
functions of B, and B2 into account as described in
Subsection 3.A.

The determination of the number N, of sections to
be divided into is a compromise between the accuracy
of the simulation and the calculation time. This
simulation is a heavy load even for a high-speed
computer, and also the calculation time is propor-
tional to N8

2. Therefore N, should not be chosen to
be too large. If N, is too small, on the other hand,
the areas of the window or the opening may not be
adjusted well enough to the specified values because
several sections are grouped together to be the win-
dow or the opening. In our model the steps of 100 x
50 and 5 x 5 ( x ) were tested, and 100 x 5 steps
were finally chosen because there was no significant
difference in the results for the two conditions. The
window illuminance is calculated as the mean value of
the illuminance on the window sections.

B. Errors Associated with the Finite Number of Reflections

Calculations of Eqs. (3)-(8) should be iterated until
the unabsorbed flux is small enough to be neglected.
I discuss here how many iterations are necessary.
Based on the first-order calculation, assuming that
the reflectance on the sphere wall is uniform, the
total flux FtIt,(n) inside the sphere after the nth
reflection is

=

4tt(n) = 4)in(1 + pw I X _ (n > 1), (11)

where 4)in is the initial input flux, P is the wall
reflectance, and x is the average reflectance of the
sphere wall including the opening. The unabsorbed
flux after the nth reflection, on the other hand, is

i)un(n) = 4)~inpwpxnl (n 2 2). (12)

This equation means that if K(0, 4) is constant, E. is Considering that the initial flux 4(Nn does not contrib-
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ute to the detector signal, one derives the relative
calculation error e(n) caused by the abortion of calcu-
lation at the nth reflection from Eqs. (11) and (12) and
is

)tt(°) - 4)tt(n)
E(n) = n -

=. pxn

)in

Figure 4 shows the plots of Eqs. (11) and (12) in which
the relation of Eq. (13) is obviously seen. In our
model aborting error Ea is first specified and (n) is
calculated after each reflection. When e(n) becomes
smaller than e, the calculation automatically stops.
In this manner one controls the number of iterations,
depending on px and other effects, keeping the accu-
racy constant. For absolute comparison the results
can be corrected by E0 since they should be lower by Ec
than the true values. In relative comparison, Ec need
not be very small, e.g., Ea of 0.05 results in 5% lower
absolute values, but in relative comparison the errors
were found to be less than 0.02% (in Model 2). In the
simulations in Subsections 5.B and 5.C, 0.05 is used
for E, and the number of iterations is kept constant
among the data compared.

C. Sampling Errors

When the illuminance E(0, 4)) on section (0, 4)) from
section (0'4)') is calculated, the screening function
S(0, 4), 0', 4)') is calculated to be either 1 or 0, depend-
ing on the geometry of the centers of each section,
even though the section may be only partially screened
by the baffle. Calculating true values between 1 and
0 would be too complicated and not realistic for this
computer model, which means that illuminance can
be overestimated from some sections and underesti-

I

0 20 40 60 80 100
NUMBER OF REFLECTIONS (n)

Fig. 4. Total flux Ftt(n) and unabsorbed flux Fun(n) as a function
of the number of reflections n. The data are normalized by the
maximum value for each curve.

mated from others. If the total of overestimation
and underestimation is not balanced, there is some
error. This error hereafter is called a sampling
error. Before this problem was in consideration in
the program, it was experienced that the calculated
window illuminance values scattered ± 0.3% at maxi-
mum with a small change of baffle parameters, which
was not acceptable.

To solve this problem, a new algorithm was adopted
in which, when S(0, 4), 0'0') is 1 (not screened) the
luminance L(0', 4)') on the wall is taken, and when
S(0, 4), 0'4)') is 0 (screened) the luminance of the
particular baffle surface (instead of 0) is taken to
calculate E(0, 4), 0', 4)'); i.e., the illuminance from the
baffle surface, which was calculated separately in the
old algorithm, is also calculated at the same time.
This idea is based on the relation that the illuminance
Ep on point P produced by the luminance L, on a
surface S at distance d is

Ep = Ls, (14)

where s is the solid angle subtended by surface S from
point P, which means that Ep does not depend on the
distance d and/or the angle of surface S provided that
the solid angle s is constant and surface S is a perfect
diffuser. With this improved algorithm, adopted in
our computer model, although the equivalent size of
the baffle may be varied slightly, the sampling errors
were reduced to a negligible level.

D. Initial Illuminance Distribution

For the internal source a point source with uniform
intensity distribution was assumed. The initial illu-
minance distribution is calculated from the luminous
intensity of the source that is calculated by the
specified total flux value of the source, with the
screening functions of baffles taken into account as
shown in Appendix B for detail. However, when the
total flux incident on all the sphere sections plus
baffle surfaces is calculated from the calculated illumi-
nance values, it does not agree perfectly with the
given total flux of the source. This disagreement is
caused by sampling errors. Therefore the illumi-
nance distribution is rescaled to make the total flux
incident on the sphere surfaces equal to the total flux
of the source.

For the external source the illuminated part is
specified by the range of 0 and 4, depending on the
geometry of the opening and the external source, and
the initial illuminance on this part is calculated from
the area of that part and the total flux value specified.
In this way the input total flux from either source is
kept exactly the same. All the simulations shown in
Section 5 used the input total flux value of 1 (lm)
except for one shown in Fig. 5.

In addition to an internal source with uniform
intensity distribution, I prepared several variations of
the intensity distribution by excluding incident light
on some part of the sphere surface to evaluate the
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5. Results

To verify the simulation program, an integrating
sphere of the Ulbricht type (the geometry used in
ordinary sphere photometers) was simulated in the
same conditions as used in the studies of Brown 4 and

._ = __ - -_ - --- de Visser and van der Woude.16 First, I performed
simulations to repeat Brown's calculation. The dis-
tribution of the indirect illuminance on the wall
obtained by the simulation is shown in Fig. 5 com-
pared with Brown's results. Although slight sam-
pling errors are recognized in the North curve, the
two results are in good agreement. The simulation

120 150 180 used an aborting error value Ea of 0.01 (refer toSubsection 4.B), and all the results were corrected by
tults of the illuminance that factor.
own's results by using Next a series of simulations was made to obtain the
fer only to lighting the interreflection window illuminance factor K(0, 4)) of a

Parameter R = 1.0, sphere with the parameters used in de Visser and van
L = , p on all surfaces der Woude's calculation. Figure 6 shows the results

of the simulation compared with de Visser and van
der Woude's results. The two curves are also in very

effects of baffles or the errors caused by different
intensity distributions of the internal source.

E. Consideration of Calculation Time
The first integration of Eq. (4) is the dominant
element of the entire simulation in terms of calcula-
tion time. This integration takes 2592 (for 5 x 50
steps) calculations of the two screening functions and
multiplication of Ejj(0, 4)) and p(O, 4)). To obtain
the distribution over the sphere surface, the same
calculation must be repeated 6,718,464 times for each
reflection. When the multiple interreflections are
considered, an enormous number of calculations are
expected. Therefore the following algorithm was
adopted to reduce calculation time as much as pos-
sible.

(1) Utilizing the plane symmetry of the sphere
geometry reduces the calculation time by half.

(2) The screening functions are calculated before
the main calculation and stored in a large bit array.
This array takes a large memory capacity, but the
calculation time is reduced by a factor of more than
10 compared with the procedure where the screening
function is calculated at each path.

The computer simulation program was written in
Fortran, and it was run on a super computer CDC
Cyber 205 at National Institute of Standards and
Technology, Gaithersburg, Md. With the Fortran
program vectorized, it took 30 s (CPU time) to
compute one condition with 100 x 5 steps with 100
interreflections. On a 20-MIPS (million instruc-
tions per second) UNIX machine the same computa-
tion took 30 min.

good agreement.
These results show that the extension of this

simulation to include a more complex design includ-
ing two baffles is valid.

B. Model 1 -Type Sphere

The basic set of parameters for Model 1 (Fig. 1) was
chosen for an opening size 12.7 cm in diameter on a
sphere 50.8 cm in diameter, which is the size of a
sphere that is planned to be used for the following
experimental analysis. Experiments are planned to
calibrate the total flux of miniature lamps (6-400 lm)
against the flux (- 20 lm) introduced from a 1-kW
quartz halogen spectral irradiance standard lamp at
0.5 m away from the opening. The size and location
of the baffles were determined for an internal source

0.8

-Simulation result
0.7 de Visser and

van der Woude

~0.5 

0.4 -

0 30 60 90 120 150 180
a (deg.)

Fig. 6. Interreflection window illuminance factor K(0, +) of a
sphere with parameters used in de Visser and van der Woude's
calculation. ParametersR = 1.0,Rd = 0,RO = OR 1 = 0.348,R 2 =
0, D = 0.663, DL = 0, P =Pbl = Pb1L = 0-90.
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of 4-cm maximum diameter and a window 4 cm in
diameter. Other basic parameters are shown in
Table 1.

Table 1 shows a comparison of the window illumi-
nances obtained with the internal source E,, versus
the external source EW2 with one of the parameters
varied. For all the results E, is lower than Eu2.
The difference (E, - Eu2) becomes smaller for the
increasing wall reflectance as well as for the decreas-
ing baffle B, size R,. The result at the bottom of the
table is for an imaginary condition in which the
opening and baffle B2 are eliminated. Figure 7 shows
the variation of window illuminances, E I and E 2,
for the internal and external sources, respectively, as
a function of distance D for baffle B, from the sphere
center. This result shows that baffle B, in this
model should be placed as close as possible to the
sphere center.

Figure 8 shows a plot of the calculated curves of
K(O, 4)) at 4) = 0 and 4) = 180°. Both curves are
normalized by the value of EW2 of this model. Note
that (0, 4)) in this figure designates the direction of the
beam from the light source, which is located off the
sphere center. In this curve the effects of baffles and
openings are clearly visible. Figure 8 shows the
lower surface of B, [1], the left-hand surface of B2 [2],
the part screened by baffle B2 (from the window) [3],
and the part screened by baffle B, [4]. K(0, 4)) is
significantly lower in thse regions because the reflec-
tion from these areas cannot or can hardly reach the
window directly. Such a decrease of K(H, 4)) should
be taken into account for the internal source, whereas
for the external source only the value at area [5] is
effective. From these results it is concluded that the
sources of error for the significant differences in the
results of Table 1 are as follows:

(1) The internal source is placed near the bottom
of the sphere, and a large portion of radiation is
incident on the area where K(0, 4)) is lower.

(2) Baffle B2 is positioned almost normal to the
direction of the window, which makes K(0, 4)) of this
surface lower.

Table 1. Comparison of Calculated Window Illuminance for Model 1 a

Varied E.2 E., Difference
Parameter (1x) (1x) (%)

p = 0.90 9.168 9.046 -1.33
p = 0.95 17.119 17.003 -0.68
p = 0.98 32.575 32.484 -0.29

R = 0.02 17.119 17.003 -0.68
R = 0.03 17.053 16.850 -1.19
R = 0.04 16.960 16.649 -1.83
R2 = Ro = 0 21.436 21.759 -0.39

aE,0 is for the internal source, EW2 is for the external source.
Basic parameters R = 0.254, Rd = 0.02, Ro = 0.06, a = 90°, DL =

0.15, RI = 0.02, D = 0.09, R2 = 0.04, D1 = 0.11, D 2 = 0.07, P = 900,
01 = 700, 02 = 1100, (Pl = 1600, (P2 = 2000, Pw = 0.95, p on baffles =
0.95, E, = 0.05.
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Fig. 7. Window illuminance as a function of the location D of
baffle B1 on Model 1 with basic parameters.

C. Model 2-Type Sphere

Based on the results obtained for Model 1, the sphere
geometry was modified and Model 2 (Fig. 2) was
designed. Parameters R, Rd, R0, R, were kept the
same as those in Model 1. It was expected that one
would minimize factor (1) by placing the internal
source in the sphere center and improve factor (2) by
placing the opening farther down so that the irradi-
ated surface of B2 may face the detector better. It
was also expected that, by tuning the angle 13 of B2,
one might balance the sphere efficiency for the inter-
nal source and for the external source.

The results of Model 2 with the basic parameters
are shown in Fig. 9. The graph shows the window
illuminance E,, EW2 (solid curves) and the total flux
otot1, otot2 (dashed curves) for the internal and exter-
nal sources, respectively, as a function of the angle 13
of baffle B2. Both illuminance and flux values are
normalized by the values obtained with the external
source with 13 = 200. A value of 0.95 was used for the
reflectance of the wall and all baffle surfaces. In this

0-O= O,
105 ^~~~~~~~- 0 -180°

U,

-J

_j

U'°jX a.
0 30 60 90 120 150 -1180

9 (deg.)

Fig.8. Interreflection window illuminance factor K(0, (P)of Modei
1 with basic parameters as a function of direction 0 from the
internal source.
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Fig. 9. Window illuminance and total flux by the internal source
(E.,, (toti), and by the external source (EW2 , (Dtot2) as a function of
the angle 13 of baffle B2 on Model 2. Parameters R = 0.254, Rd =

0.02, Ro = 0.06, at = 130°, R, = 0.02, D = 0.09, DL = 0, R 2 = 0.045,
D1 = 0.059, D2 = 0.07, 01 = 110°, 02 = 150°, a = 0.05, p on all
surfaces is 0.95.

graph E1 and E 2 are balanced near 13 = 70 as
expected. The falloff in the flux curves for smaller
values of 13 indicates decreasing sphere efficiency,
which seems to affect the illuminance curves as well.
The falloff of the window illuminance for larger
values of is considered to be caused partly by the
screening effect of B2 between the detector window
and the opening. (Part of the opening is seen from
the window.) To analyze this further, I calculated
the window illuminance for different direct-illumi-
nance distributions. Figure 10 shows the results for
illuminances, which are (1) uniform, (2) uniform but
not incident on B2, (3) incident only on B2, (4) with the
external source. From this graph we see that curve
(2) is similar to curve (4) and curve (3) is similar to
curve (1). From this observation one finds that the
difference between E, and EW2 is caused largely by
the direct illuminance on B2. In response, B2 should

I

9E

9

9S

0 5 10 15
POSITION OF BAFFLE B. (D) (cm)

20 25

Fig. 11. Window illuminance by the internal source E, and by
the external source E2 as a function of the location D of baffle B1
on Model 2.

be located as far as possible from the source (or
window) and made as small as possible, although the
geometry is restricted by the size and location of the
opening.

As for the location of baffle B1, D = 9 cm (nearly
one-third of R) was chosen as a basic parameter,
which is considered theoretically to minimize the
effect of B,."1,'4 To verify this, simulations were
performed, varying the value of D. Figure 11 shows
the window illuminance E, (internal source) and EA2
(external source) as a function of D with 3 fixed at 70°.
Values are normalized by the value of E122 at D = 4
cm. The peak of each curve is considered to be the
point where the effect of B, is minimum. The curve
for the internal source has its peak at around one-
third to two-fifths of R, which is in perfect agreement
with the theory. The graph also indicates that EW2is
not affected by D as long as B, is not too close to the
window.

In Fig. 12 the window-illuminance curves for differ-
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Fig. 12. Window illuminance by the internal source E,1 and by
the external source E2 as a function of the angle , of baffle B2 on
Model 2 with different sizes (radius R,) of baffle B1.
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Fig. 13. Window illuminance by the internal source E 1 and by
the external source E 2 with different wall reflectances Pw.

ent sizes of B, (Rj) are shown. One finds that
changing R, shifts only the E, curve, resulting in a
shift of the balancing point, i.e., the optimum value
for 1 depends on R1.

In Fig. 13 the window-illuminance curves for differ-
ent wall reflectances are compared. The same reflec-
tance values are used for baffle surfaces. It is clear
from this result that the higher the reflectance is, the
smaller the effect of the baffle angle. (Wavelength
selectivity is not considered here.) However, note
that the change of Pw does not affect the balancing
point much; i.e., even when the reflectance is low the
error can still be controlled to be small enough if 13 is
chosen correctly. It was also found by another simu-
lation that changing only Pb2L (reflectance of the left
surface of B2) shifts the balancing point significantly.

The errors associated with the intensity distribu-
tion of the internal source were evaluated by simula-
tion with (1) the uniform intensity for all angles, (2)
the uniform intensity toward only the upper hemi-
sphere, and (3) the uniform intensity toward only the
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Fig. 14. Window illuminance curves with different intensity
distributions of the internal source.
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Fig. 15. Window illuminance and total flux on Model 2 with
smaller opening and smaller baffle B2. Parameters Ro = 0.045,

R2 = 0.038, D1 = 0.084, D2 = 0.10, 01 = 1150, 02 = 145°. (Other
parameters are as in Fig. 9.)

lower hemisphere. The results are shown in Fig. 14
where curve (4) represents the external source case.
This result shows that the errors caused by different
intensity distributions of the internal source are not
serious near the balancing point. It is also possible
to evaluate and correct errors with intensity distribu-
tions I(0, 4)) of real sources.

Another simulation was made with a sphere of the
same size with a different size opening (9 cm in
diameter). Baffle B2 is also smaller and placed closer
to the opening. Figure 15 shows the results for this
geometry. Other parameter values are in the figure
caption. Although there are some sampling errors,
the results show that the calibration error with this
geometry is less than 0.1% regardless of 13. All other
errors are also assumed to be much smaller than
those for the case of the larger opening.

6. Summary and Conclusion

Two models of an integrating sphere with an opening
and a pair of baffles Were designed for a new method
of realizing the total flux scale. A computer simula-
tion program was developed to analyze the sphere
models and to predict the calibration accuracy.
Equations were derived for the sphere geometry to be
applied for the ray-tracing technique. To realize
sufficient accuracy for radiometric purposes, an algo-
rithm was developed in the program that minimizes
the sampling errors. The simulation results were
verified compared with analyses reported in the past
on a sphere of simple geometry. Simulations were
carried out with many variations of sphere geometry,
and it was shown that one of the models would have
sufficient accuracy for practical use of this method.
It was shown that one could balance the sphere
efficiency for the internal source with that for the
external source by selecting the position and the
angle of the baffles appropriately. It was also shown
that a higher reflectance of the sphere wall makes the
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sphere design less critical. The calibration errors
even with different intensity distributions of the
internal source were predicted to be within a few
tenths of a percent. Although this simulation was
intended for the particular sphere models, the equa-
tions and the algorithm can be applied generally to
the integrating spheres of other geometries.

The models were designed assuming an actual
experimental setup for calibrating the total flux of
miniature lamps. However, this method can be ap-
plied to larger spheres for ordinary lamps. In that
case the opening is much smaller relative to the
sphere size, and the systematic errors can be even
smaller than reported here. This method can also be
applied in principle to establish the spectral total
radiant flux scale. In such cases the experimental
aspects of the linearity and the detectivity of detec-
tors or monochromators may be important, because
the illuminance or the spectral irradiance at the
detector window of larger spheres is at a significantly
low level for the external source.

In the simulation many other factors, such as the
reflectance nonuniformity over the sphere wall, the
reflection properties of the sphere coating, and the
detector's angular response variation, were not consid-
ered. To verify the accuracy of this calibration
method further, and also the accuracy of the com-
puter simulation, an experimental verification is nec-
essary.

The author thanks D. A. McSparron and K. D.
Mielenz for their discussions and guidance.

Appendix A: Screening Functions and Position Factor
Functions of Baffles

The variables used in this Appendix are specified in
Fig. 3 unless given in particular. For convenience in
deriving the equations the restrictions of D > -D,,
D2 0, DL < D are assumed.

Consider two points (0, 4)) and (', 4)') on the sphere
surface. When the (0, ) coordinate is changed into
the (x, y, z) coordinate, the two points are expressed:

x= R sin 0 sin 4,
y= R sin 0 cos,

z = R cos 01,

X2 = R sin 02 sin (42

Y2 = R sin 02 cos 4)2,

Z2 = R COS 02-

(Al)

where

x0 = (D - zl)(x 2 - x1)/(z 2 - Z1) + x1,

yo = (D - Z1)(Y2 - Y1)/(Z 2 - ZI) + Yl-

The screening function Sb2W(0, (b, 02, 2) of baffle B2
between points (01, 4,) and (02, 2) is

S= (01 ( 0
2 , (2)

= 1 for X02 + (y - D2 )2 + (z + D1)2 > R2 2

= 0 for x0
2 + (yo - D2 )2 + (z0 + D1)2 < R 2

2 ,

where

X = 1 + (x2 - x1)(y0 - Y1)/(Y2 -Y),

(k - nzl)(Y 2 - Y1) + nYl(Z2 - ZI)
m(y 2 - Y1) + n(z 2 - Z1)

(k - my)(Z 2 - Z1) + mz,(Y 2 - Y1)
n(z2 - Z1) + m(y 2 - Y1)

where

k = [D,(D + D3) + D2
2 ][(Dl + D3)2 + D2

2]-1/2 ,

m = D2[(D1 + D3)2 + D2
2]'1/2 ,

n = -(D, + D3)[(D1 + D3)2 + D2
2]-1/2,

(A4)

where k, m, n are the constants for the equation of
the plane including the baffle B2 as given by

my + nz = k.

D3 is the y intercept of a perpendicular of baffle B2
from the center of B2 as given by

D3 = D2 /tan - D,.

The position factors Tbjuw(0, 4) and TbLW(0, 4)) be-
tween the upper and lower surfaces of baffle B, and
point (0, 4)) are

ID -RcosOJ(R -Dcos 0)
, (W =(R 2 + D2 - 2RD COS 0)2

(A2)

The screening function Sbiw(01 (1) 02, 4)2) of baffle B,
between point (01, 4),) and point (02, (2) is

Sb1W(01, 4)I, 02, 4)2) = 1 for x0
2 + yo2 > R12

Tb1uw(01 = (W¢

= 0

Tb1Lw(0, ) = 

forD < R cos 0

for D R cos 0, (AS)

forD < R cos 0

= 0 for x0
2 + y 2 < R12, (A3) = f(04)) for D R cos 0. (A6)
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The position factors Tb2rw(0, ) and Tb2LW(0, 4)between
the right and left surfaces of baffle B2 and point (0, )
are

[(y, - yo)2 + ( - zo)2 ]/ 2(R + D, cos 0 - D2 cos 4 sin 0)
f (, ' [R2 + D12 + D2

2 + 2R(Dl cos 0 - D2 sin 0 cos 4))]2

Tb 2 rw(0, 4)) = f ( ()

= 

Tb2Lw(0, ) = 

for my, + nz, > k

for my, + nz, < k,

for my, + nz, > k

= f (0, ) for my, + nz, < k.

The screening function Sb2bl(0, 4)) of baffle B2 between
baffle B, and point (0, 4)) is expressed by Eq. (A4) in
which x2 = 0, Y2 = 0, 2 = DL. The screening
function Sblb2(0, 4)) of baffle B, between baffle B2 and
point (0, 4)) is expressed by Eq. (A3) in which x2 = 0,
Y2 = D2 , z2 = -D,. The positioning factors Tb1b2 and
Tb2bl are given by

(D + Dj)[D2
2 + (D, + D)(Dl + D3)]

TbH2 = [(D + D1)2 + D2
2]2[(D3 + D1)2 + D2

2]/ 2

Tb2bl = Tb1b2- (A9)

Appendix B: Initial-illuminance Distribution

The initial-illuminance distribution Eo(0, 4) on the
sphere wall is given by

I(0, 4))(R - DL cos 0)Sbls(O, ())Sb2s(0, 4))

(R + DL2 - 2RDL cos0)3/2

(Bi)

where Sbl,(0, 4)) is expressed by Eq. (A3) in which x2 =
0, Y2 = 0, Z2 = DL. Sb2,(0, ()) is expressed by Eq. (A4)
in which X2 = 0, Y2 = 0, Z2 = DL. The condition z, > 0
for Sb,,(0, 4) = 1 and y, > 0 for Sb2s(0, 4) = 1 should
be added, because otherwise an image of the baffle
appears in the opposite direction in the sphere.

The initial illuminance on baffles Eo(blL) and
EO(b2L) are given by

EO(blL) = I(0, 0)/(D - DL)2, (B2)

E 0(b2L) I(c, 0)[D2
2 + (D, + D3)(D, + DL)]

[(D, + DL)2 + D2
2]3 /2[(Dl + D3 )2 + D2

2 ]'/2

(B3)

References
1. J. Bastie, B. Andasse, and R. Foucart, "Luminous flux measure-

ments with a goniophotometer; study of time effects on data

collection," in Proceedings of the 22nd Session of the Interna-
tional Commission on Illumination (Commission Internation-
ale de l'Eclairage, Vienna 1991), Vol. 1 (1), Div. 2, pp. 45-47.

2. R. S. Hu, "Importance of axis alignment in goniophotometry,"
in Proceedings of the 22nd Session of the International Com-
mission on Illumination (Commission Internationale de
l'Eclairage, Vienna 1991), Vol. 1 (1), Div. 2, pp. 21-22.

3. I. Lewin, R. Laird, and B. Carruthers, "Development of new
photometer concepts for quality control applications," J. Il-
lum. Eng. Soc. 19, (2), 90-97 (1990).

4. R. E. Levin, "Photometric connection," Light Des. Appl. 12(9),
28-35 (1982).

5. T. Otsuka, H. Hatanaka, T. Sakaguchi, M. Fukuhara, and T.
Noguchi, "A study on the photometric measurement of
floodlights," in Proceedings of the 22nd Session of the Interna-
tional Commission on Illumination (Commission Internation-
ale de l'Eclairage, Vienna 1991), Vol. 1 (1), Div. 2, pp. 3-4.

6. T. M. Goodman, J. R. Moore, N. C. Pearce, and D. K. Murray,
"The establishment of a new national scale of spectral total
flux," in Proceedings of the 22nd Session of the International
Commission on Illumination (Commission Internationale de
l'Eclairage, Vienna 1991), Vol. 1 (1), Div. 2, pp. 50-53.

7. J. Jacquez and H. Kuppenheim, "Theory of the integrating
sphere," J. Opt. Soc. Am. 45, 460-470 (1955).

8. D. Goebel, "Generalized integrating-sphere theory," Appl.
Opt. 6, 125-128 (1967).

9. M. Finkel, "Integrating sphere theory," Opt. Commun. 2,
25-28 (1970).

10. E. Evans and S. Lowenthal, "Moment generator: new role
for the integrating sphere," J. Opt. Soc. Am. 62, 411-415
(1972).

11. T. Muroi, "Investigation on the luminous flux integration by
closed space," J. Illum. Eng. Inst. Jpn. 43, 52-57 (1959).

12. L. Morren, "Method for assessing the effect of the screen in an
integrating sphere with an application to the photometry of a
tubular lamp," Appl. Opt. 10, 2621-2628 (1971).

13. F. Rotter, "View into the integrating sphere through the
observation window," Appl. Opt. 10, 2629-2638 (1971).

14. R. Brown, "A numerical solution of the integral equation
describing a photometric integrating sphere," J. Res. Natl.
Bur. Stand. Sect. A 77, 343-351 (1973).

15. W. Fussel, "Approximate theory of the photometric integrat-
ing sphere," Natl. Bur. Stand. (U.S.) Tech. Note 594-7 (1974).

16. A. C. M. de Visser and M. van der Woude, "Minimization of the
screen effect in the integrating sphere by cariation," Light.
Res. Technol. 12, 42-49 (1980).

1 May 1994 / Vol. 33, No. 13 / APPLIED OPTICS 2647

(A7)

(A8)
.


