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ABSTRACT

The angular distributions of light scattered by gold-coated and aluminum-coated gratings
having amplitudes of ~90 nm and periods of u6¥were measured and calculated for light
incident from a HeNe laser at an angle of &xperimental results are compared with
predictions of Beckmann's scalar theand Rgleigh's vector thegr The measured scattering
pattern has a background of scattered light due yntniesidual surface roughness. Also the
power in the higher-order peaks is larggisbveral orders of magnitude than the computed one,

which can be attributed maynto the low-order contributions of the harmonics in the profile.
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1. Introduction

Coherent light, when scattered from a sinusoidal grating, forms a pattern in the far field
that shows diffraction peaks. The number of peaks and their positions are governed by the well-
known grating formula. While the positions are determined by the period of the grating and the
angle of incidence, the power in the peaks depends mainly on the amplitude of the grating.

Laser light scattering from a holographic grating has been investigated with a view
toward its possible use in the determination of the linearity of bidirectional reflectance
distribution function (BRDF) instruments, atask that requires a wide dynamic range in scattering
power, over seven orders of magnitude or more. When the amplitude of the grating is much
smaller than the wavelength of the laser light, the power in the peaks decreases rapidly as the
order increases, giving rise to the desired large range of power values. Another possible
advantage of this approach is that the power for the diffraction orders might be predicted and
controlled through the designed groove shape, that is, the amplitudes and relative phases of the
fundamental and harmonic components of the grating profile. In addition, it might be possible to
predict the power in the peaks by measuring the profiles of the grating grooves.

In this paper we report on measurements of the BRDF of two samples of sinusoidal
surfaces and on the theory that we used to analyze scattering by perfect sinusoids and by surfaces
described by a measured profile. The experimental scattering pattern differs significantly from
that predicted by approximate theories applied to perfectly conducting sinusoidal surfaces, such
as the Beckmann scalar theory and the Rayleigh vector theory. The background scattering is
much lower and the power in the higher-order peaks is much larger than predicted. We come to

the conclusion that the reduction of the background scattering is due to the two-dimensional



nature of the residual surface roughness and that the power in the higher-order peaksis explained
by harmonicsin the profile.

The scattering of light emitted by a CO, laser (wavelength A = 10.6um) from a diamond-
turned sinusoidal grating (8T SRM 2071: amplitudea0.5um, period D= 100pum) was
previousy described?® The analis indicated that a step window contributed to the large
computed background scattering which obscured the higher-order peaks, while other windows
that represent more realistic beam profiles led to better results. Furthermore, it was found that
harmonics of the profile caused peaks to appear above the background at the locations of the
higher-order peaks and that the residual roughness did not affect the results in a significant
manner.

Here we angtze the HeNe laser light £ 0.6328um) scatteredya pair of holographic
gratings (amplitude a 90 nm, period D: 6.67um) and our results differ from those obtained
for the CQ laser. The residual roughness, rather than the step window, is found to cause a large
computed scattering background. The effect of the windowing function is too small to affect
significantly the computed scattering background. We propose that harmonics of the profile
explain the relativet large amplitude of the higher-order diffraction peaks, but amplitudes and
phases of the harmonics cannot be obtained dirigoth the measured profiley la least-
squares fit of the first terms of a Fourier series ngdbelcause the point-to-point spacing
fluctuates.

Some of the prelimingrconclusions drawn from this investigation have changed. New
scattering measurements carried out on similar samples show that the difference between

scattering of s- and p-polarized light is much smaller than that reported in Ref. 4. The previous



discrepancy was probably caused by misalignment of the sample. Also the dependence of the
power in the peaks on the phases of harmonicsis now properly taken into account in derivations
within the Beckmann theory. Some preliminary results found in Ref. 4 that remain valid are
guoted here without further elaboration.

The equations for the intensity of the light scattered by a sinusoidal grating obtained using
the Beckmann and Rayleigh theories for a perfect conductor, as well as a discussion of harmonics
and residual roughness, are presented in Sec. 2. Experimental results and comparison with

computations are found in Sec. 3 and results are summarized in Sec. 4.

2. Theory

There are anumber of theoretical definitions and derivations that are needed to discuss
the experiments carried out with the sinusoidal surfaces. In Sec. 2.A we sketch the derivation of
the Beckmann theory of scalar wave scattering by perfect conductors, in Sec. 2.B we give the
formulas for the diffracted power for the two polarizations of the incident light in the Rayleigh
theory, in Sec. 2.C we derive equations for the effects of the residual roughness of the sinusoidal
surface, and in Sec. 2.D we briefly describe how the harmonic content of a profile canin

principle be determined.

A. Beckmann Theory
We first assume that a plane wave is incident upon a perfectly conducting sinusoidal

specimen with no harmonics and no residual roughness. The profile for such asurfaceis



h(x) = asin(Kx + ), 1)

where a isthe amplitude, K is the spatial wavenumber given by 2x/D, D isthe period, and o isa
phase constant.

Beckmann® solved the scattering problem by using the scalar wave equation and the
Kirchhoff approximation. For a one-dimensionally rough surface, the angular distribution of the
scattered field at alarge distance from the illuminated part of the surface, normalized to the field

that is obtained in the specular direction for a smooth surface, is given by®
Yol
p(0,0) = [F(O,0)/L] f dx exp[ixv,(0,,09) + ih(x)v,(6,,0J)] , 2
YL

where 6, and 0, are the incidence and scattering angles, respectively, v, = k(sing; - sind,),

v, = - k(cost, + cost,), k isthe optical wavenumber 2n/h, L isthe width of the illuminated
area on the sample, assumed here to be infinite in the other direction, and edge terms have been
neglected. See Fig. 1 for definitions and sign conventions of the parameters.” The obliquity

factor, F(6,,0,), is given by

F©,0) = (1 + coshcosh, - sind,sind) /[cosd,(cosd; + cosb)] . ©)

We use the Jacobi-Anger expansion of an exponentia in terms of Bessel functions,

ep(Asng) = Y J(W)exp(ing), @

set A(6,,0) = av,(6,,6) and § = Kx + a, and substitute this expansion into Eq. (2) to obtain



WL . a .
p(0,,0) —[F(ei,es)/L]fl/deexp[lxvx(ei,es)] Z JIA@®,0)] exp[in(Kx + a)] . (5)

We integrate each term of the sum and get

p(0,0) = F0©,0) i exp(ina)J [A(0,,09] sSinc{%L[v, (6,0) + nK]} . (6)

The maima of the sinc functions occur whep v + nK = 0, which is satisfied for the finite set of

values off); that are the real solutions of the grating equation,

sinb, - sinb, = nA/D, n=-N, -N, +1, .., N,. 7)

Multiplying p in Eq. (6) ly its complex conjugate, we obtain

p(6.,6)F = [F(6,,6)]% fj {3, [A0,0)1} >sincX{ Y2L[v (6,0) + nK]}, (8)

where we have assumed that, i D, the diffraction peaks are wenarrow and the field of one
peak is almost zero at the positions of the other peaks, so that products of terms of different order
are negligible. The sum can be restricted to tlysiphl values of n in Eq. (7) because the
contributions of the other terms in the infinite sum agtigile.

We assume that the full detection aperture afgles much larger than the width of the
peak, whence the value of the detected power is essgnbaktant within the range of the

aperture. The power distribution, up to a constant factor, can thesqpiassed by



N,

P(6,6) = Y. F2(6,0,)J7IA(6,0,)]rect[(6, - 6,)/6,]1, 9)

n=-N;

where the rectangle function regtfs 1 if [x| < %2 and O otherwise. Bessel functions decrease
rapidly with the order n. Thisxpression for the power in the diffraction peaks is what the
Beckmann thegrpredicts. Stovér computes the power contained in the diffraction peak of
order n for a sinusoidal grating and obtais{A(0,,0,)]cos*(6,) in terms of the incident power,
P., which shares the rapidVarying function ofo,, J4(A), with the terms in Eqg. (9).

If we allow the sinusoidal grating to have M harmonics, the profile has the form

h(x) = i/l: asnK x +a), K. =mK. (10)
m=1

Instead of Eq. (2) we obtain the scattering coefficient

M

p(0) = [F(O)/L] %deexp{xvx(es) v YasnK x + a) vz(es)}
VoL m=1
1/2L . M . .
= [F(69/L] f VdeeXp[IXVX(QS)]l_:[l explia, sin(K, x + a JV,(0J)], (11)

where the dependence @ns left implicit for conciseness. We use again tkga@sion in Eq.

(4) for each term in the product and obtain

Y

M .
p(0) = [F(6)/L] tdxexp[ixvx(es)]l_[l{ Yy J, [A 01 explin, (K x + am)]}, (12)

1 = Np=—



whereA,(0) = a,v,(0). We cary out the multiplication, which means that the product of the

sums becomes a sum of the products, and obtain

p0) ~FO) Y Y o Y explia)Ia, [0,0013, [A,00)1.-3, [A,01Snc(*4[v,(0)

nlz—oo nzz—oo anfoo

+ N(v)K]} ,
(13)
wherev stands for the set of indices and
M M
a) = a(n, ., ) = Y. na, N =Nn, ..,n,) =y mn. (14)
m=1 m=1

The peaks of the sinc functions in Eq. (13) occur at the values of N that make the argument
vanish, that is, for N equal to the values of n that satief grating equation. We ugefor the
Kronecker delta, which is equal to 1 when i = j and vanishes otherwise. We group together the

terms that have the same value of N and rewrite Eq. (13) as

p(0) = F(O)) y sinc{¥a[v,(0) + nKI}p (0, (15)

where

p.(0) - Y Y.y 8 iy @PLAMII, [A,0JN, [A,09]..-d, [Ay (0] . (16)

ny=-c Ny=-o Ny=-

Eachp, is made up of a sum of terms that correspond to different order peaks of the fundamental



and the harmonics, each multipliegdphase factor giverylthe corresponding(v). If the

products of sinc functions of different arguments are negligible, the intenprtoportional to

p©OJF = [F(OY]? i sSinc?{¥L[v,(0) + nK]}Hp,OJF . (17)

The power as a function of scattering angle is obtained as before, and we get

N,

PO) = Y [FO)1’real(6; - 6,)/6,1Ip,(0)F . (18)

:7Nl

This equation gives the power in the diffraction peaks when the grating profile contains
harmonics of the fundamental sinusoid.

If we set hX) = 0 in Eqg. (2), we obtain a field amplitude proportional to a sinc function
with slowly decreasing oscillations for scattering angles of increasing magnitude. This behavior,
which extends to surfaces with a root-mean-square (rms) roughness small compared to the
wavelength of the incident light, does not correspond to that of measured power distributions and
Is a consequence of the step windowing function assumed in the Kirchhofkiapgron. An
incident field that is of constant amplitude over the illuminated region and drops discontinuously
to zero outside was found to lead to difficulties that do not occur when a better behaved beam
profile is used. We thus multipthe integrand in Eq. (2)yla windowing function, W(x), and

obtain

p(®y) = FO f :de(x)exp[ixvx(es) + ih(x)v,(6J)] . (19)

10



We have removed the factor 1/L, which affects only the normalization, and we have extended the
range of integration to infinity by assuming that W(x) vanishes at large distances. Wetried a
Gaussian, acosine, asinc, and a Schwartz windowing function. We prefer the Schwartz

function, defined by

W(x) =

{exp[—OtXZ/(L2 - x?)], Xl <L, (20)

0, elsewhere,

where o isaparameter. Thisfunction isinfinitely differentiable and vanishes outside afinite
interval of length 2L. The actual beam profile, apertures, and other characteristics of the
instrument are more accurately represented by a measured signature or response function, which
can then be convolved with the computed intensity distribution. A more accurate representation
of the beam cross section would require that we formulate the problem in three dimensions
because the illuminated spot isfinite. 1t would also be more accurate to use a complex, as

opposed to real, windowing function.

B. Rayleigh Theory
The Rayleigh vector theory, which applies to perfectly conducting gratings, provides the
power in the diffracted peaks for different incident polarizations.® The power in the nth order

diffraction peak relative to the specular power, P, is given by

P = B/PBF, B, =k? - o =ksno +Kn, P =p, = kcosh, (21)

where the B,, are determined by the matrix equation

11



 a B =h, m=0 %1 2 ... (22)

The a,, and h are given in terms of the Bessel functihnand the modified Bessel functions

of the first kind,l,,, by
im™"DJ_ (B,a) if B2 > 0,
n - . L (23)
(-1)™"DI,,_(B.|&) if B, <O,

ha= - (-)"DJ,(Pa), (24)

for the incident electric field perpendicular to the plane of incidence, s polarization, and

i mae [~ J 1 (Bd) — Ty (Bia) + DB (B} if By > 0,

B = o - (25)
(D" Nimae, [, (B — 1. (BB + DB, (B} if By <0,

h, = (1™ e, [3,,(B8) + J,,.,(Ba)] + DBJI,(Ba)}, (26)

for the incident electric field in the plane of incidence, p polarizatiorpractice we limit the

values of m and n in Eq. (22) to a finite set.

C. Scattering Due to the Residual Roughness

12



We now consider the effect of the residual roughness on the background scattering based

on the Beckmann theory for the one-dimensional case. The profile,

h(x) = asin(Kx + o) + h(x), 27)

includes a function h,(x) that represents the random roughness. Then the scattering amplitudeis

given by Eqg. (19), which becomes

p(0) = F(0) f:dxw(x)exp[ixvx(es) +iasin(Kx + a)v,(0) + ih(x)v,(6))] . (28)

We choose a Gaussian window,

W(x) = (/2rw) ‘exp[- x2/(2w?)], (29)

because the Gaussian function can be more easily treated mathematically and it allows usto
extend the range of integration. We obtain

POIP) - [FOY2 Y Y expliln-m)ald (A0 13, [A©)] [L(2mw) [ o[ "o

N=-c N'=-c0
-exp{- (x2 + x2)/w?) + i[(x - x)v,(0) + K(x - n'x)]Kexp{ilh,(x) - h(x)Iv,}),
(30)
where the angular brackets indicate an ensemble average. We further assume that the height
distribution and the autocorrelation function of the residual roughness are Gaussian. The residual
roughness is characterized by its rms value ¢ and autocorrelation length T. Then the ensemble

averageis'

13



(exp{iv,[h,(x) - h(x)]}) = exp(-g)exp[gC(R)], (31)

where g = Yo%, C(R) = &xp(- R¥T?), and R = x- x’. We substitute this ensemble ageranto
Eqg. (30) and integrate. Since most surfaces have parameters thainsatisand g« 1, we
expand functions of g to first order and drop terms proportional to){TAw Eg. (30), the term
with the exponent proportional to K leads to a factape- ¥4(n- n')%(2zw/D)?], which is

negligible compared to 1 if R n" because w is generalyjreater than several D. We then obtain

(p(OJP = [F(O]? Z 31801 @ - gexd-w2(v,(6) + nKY]

+ g(T/2w)exp - % T?(v,(0) + nKJ|}. (32)

The second term is associated with the power spectral yi@aSID) of the residual roughness.
The PSD of the random Gaussian component of the profilg, iIS(given ly the Fourier

transform of the unnormalized autocorrelation function, that is,
S(t) = [dRexp(- 2nif,R)o>C(R) = ["dRexp(- 2if,R)o?exp(- R/T?)

= o2 /aTexp(- if T2). (33)

Thus, in this particular case, Eg. (32) can be written in terms Qf, S(

(pOIP) = Z 31801 - gexp - w2(v,(6) + nKP| + (v,(6)2/2/aw)S(f,)}.  (34)

where

14



f = [v(0) + nK]/(2r) = (sino, - sin0)/2 . (35)

Equation (34) can be interpreted as follows: the diffraction peak and its window-induced tails are
attenuated by afactor 1-g, while the background is generated by aterm proportional to the PSD
of theresidual roughness. Let us call this PSD term the residual roughness tail for convenience.
From Eq. (32) we can see that the residual roughnesstail isaslowly decreasing function of f,
which has a small peak value, gT/2w, that determines the magnitude of the background
scattering, while the windowing tail isarapidly decreasing function with arelatively large peak
value, 1 - g. These results should not depend strongly on the choices of a Gaussian windowing
function, height distribution, and autocorrelation function.

Actually, the residual roughness is two-dimensional in nature even though the main

grating profile is one-dimensional. Consequently, Eg. (27) should be replaced by

h(x,y) = asin(Kx + a) + h(X.y). (36)

We assume that the azimuthal angle of the direction of incidenceis equal to zero and we
introduce the azimuthal angle, ¢, of the scattering direction and obtain the two-dimensional

analogue of Eq. (28),

00,0 = Fi0u0) [ [ ey Woxy)exslibon, 0,09 + (0,0

+ asin(Kx + a)v,(0) + h(xy)v, (01}, (37)

where v, = k(sinb, - sind cosp), v, = ksind sing, and

15



F;(6,09) = (1 + cosb,cosh, - sinb,sinfcosp ) /[cosb,(cosh, + cosby)] . (38)

We replace WX) defined in Eq. (29) with

W(xy) = (2nw?) texp[- (x* + y?)/(2w?)] . (39)

A lengtly calculation leads to the analogue of Eq. (32), namely

O,0)P = [F0,0012 Y IIAOI{ (A - gexpl-w2(v (0,09 + TKP - wv,(0,00?]

+ g(TXTy/4w2)exp[— VAT (v, (0,00 + Knf - 1/4Ty2vy(es,<ps)2}},
(40)

where T and J are the corresponding Gaussian roughness autocorrelation lengths. We can now

express the intengiin terms of the two-dimensional PSD, f.8(), by

(pOs0IP) = [Fs0,001 Y JIAOI(L - gexg-w{v,(0,0) + nKF - wv,(0,0)?]

+ [v,(0)% (4nw )] S(f,,. )}
(41)

where f, is unchanged drf, = sindsing,/A. This equation will then result in a much lower

background due to the residual roughness than Eq. (34) when the yndéstsibution is
determined in the plane of incidence because for one-dimensional roughness all the light is
scattered in that plane. The measured quastthe power, or the intengiintegrated over the

finite size detector aperture, which corresponds to the integral of the iniertsg. (41) with

16



respect to f, and f,. Since the residual roughnessis very small compared to the wavelength of
light, the distribution of the scattered intensity perpendicular to the plane of incidenceis
proportional to the PSD aong the f -axis, so that the limits of integration are determined by the
aperture size. Theintegration hasto be carried out from -f, to f;, wheref; = sin(¥®,)/.. For
isotropic residual roughness we havg,§f = S,(f), where f = ,/ff + fyz, and the ratio of the

background intensities of the actual surface to a one-dimengiooadh surface is

R = |0ty SY17 + 17) /[ty SIfEZ + 17). (42)

A rigorous vector theoty which takes into account both finite conductivid
polarization effects could be used to calculate the scattered light. We have used instead the
apprximate Rgleigh theoy to determine the difference between polarizations. The
appraimation is valid for ka < 0.448, as determingdcbmparison with the rigorous thgan
the case of the sinusoidal gratidg. For the present problem we hav&®25, which is
included in the range of valigit The Raleigh theoy assumes, however, a perfgabnducting

scatterer.

D. Harmonics

A profile of a nominal sinusoidal surface is likgko contain harmonics of the
fundamental sinusoid and a part that is not periodic called the residual roughness. One method to
determine these harmonics consistsxipamding a measured profilex)into a truncated Fourier

series

17



h(q) = A, + iﬂ: A cosmKx) + B, sin(mKx)| - A+ i/l: g, sin(mKx + o),  (43)

m=1 m=1

where the coefficients can be obtained by integration from

L
A =K f dxh(x)cos(nKx), n =0, 1, 2., (44
an 0
K [t .
B, = ——| dxh(X)sin(nKx), n =1, 2,..., (45)
an 0

where L = N D, assuming that the length, L, is an integer multiple of the period, D. If alinear
trend is removed from the data, the coefficient A, vanishes. The period can be determined by a
least-squares fit of a sinusoid with the assumed number of harmonics to the profile. Asthe
period varies, the part of the profile that corresponds to an integer number of periods changes
too, and has to be adjusted at each step of the minimization.

An alternative determination of the harmonic content of the periodic surface isthe
computation of the PSD.* The amplitude of a harmonic can be estimated from the magnitude of
the peak in the PSD at the corresponding frequency, but we do not obtain the information on the

corresponding phase.
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3. Experimental and Computed Results

We have used aluminum- and gold-coated holographic gratings manufactured by the
American Holographic Co.** The samples used in the experiments reported here are not those
used in our previous work,* although they have the same nominal dimensions.

In Sect. 3.A we describe the stylus measurements and the profiles obtained from the
samples aswell as a partial determination of its harmonic content. In Sect. 3.B we present the
results of BRDF measurements and comparisons with computations based on measured profiles,

including the effects of residual roughness.

A. Stylus Measurements

Surface profiles were obtained using ayS&p sylus profilometer with a um radius tip
at the same centered spot where light scattering measurements were performed. We obtained
three 1 mm profiles in a line and two more at a distance of 1 mm to the side of the central profile.
Each profile had 12000 points. We previgusiund that the use of a Quin radius tip did not
lead to significantt different results. The profilometer was calibrated before and after these
measurements for both horizontal and vertical displacements. We estimate that the error in the
vertical displacement is ~1%. The measured profiles show occasionaldaugsi@ns or
outliers, which we attribute to particle contamination and scratches. We determined the
amplitude of the sinusoidylirst subtracting the linear trend of the profilgdleast-squares-fit
method and then computing the root-mean-square deviation from the baseline. Weg thaltipl
result ty v2 to obtain an apprimate value of the amplitude. The average of the calculated

amplitudes obtained in this manner from the five profiles is 0.Q@4%or the aluminum
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specimen and 0.09Q#n for the gold specimen. Ouitliers in the profiles for the aluminum
specimen make the calculated amplitudey ¥fram 0.0861um to 0.1114um. Ouitliers that
correspond to defects in the surface cledd not e&tend to infiniy, thus affecting the measured
scattering intensities much less than the scattering calculated for a surface that wanesran|
dimension.

The magnitude and phase of the lower-order harmonics can in principle be obtained by
the procedure outlined in Sect. 2.D. However, when this procedure is carried out, results show
that the apparent period of the measured profile varies, leading to a poor least-squares fit of a
periodic function. The fitted periodic function and the measured profile are often out of phase,
which adds large contributions to the quadit fit function. This drift is probalgldue to a
variation in the speed of theykts motion across the sample and not to an actual period variation.
To correct for the gtus speed variations we changed the horizontal coordinates to make the
zero-crossings equispaced and the period equal tqué@ising a cubic spline interpolation.
Periods that contained outliers were deleted and 100 periods of the new profile were digitized at
constant point-to-point-spacing imeans of another cubic spline interpolation. These corrected
profiles are then used in the BRDF calculations described in #t&petion. Variations in
amplitude have a less drastic effect on the least-squares fit.

The amplitudes computed for the corrected profileg batween 81.7 nm and 87.8 nm,
averaging 83.9 nm, for the aluminum sample, and between 85.7 nm and 90.5 nm, averaging 88.1
nm, for the gold sample. Consequgntike decided to use a value of 86 nm in calculations for a
perfect sinusoid, which is an idealized representation of the actual surface. The digdigpanc

several orders of magnitude for the higher-order peaks is not affected signifibyesithall
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changesin the amplitude. The values of the computed diffraction peak angles for an angle of
incidence of 6°, aswell as measured and computed power in the peaks, are given in Table 1.

Part of one of the modified profiles of the gold sample is shown in Fig. 2a, where we can
see that the amplitude of the profile varies significantly. Thisistypical of all of the measured
profiles. The PSD of this profileis shown in Fig. 2c. A consequence of the modification isa
narrowing of the peaks and an increase in their height. The second harmonic has an amplitude
equal to ~4.5% of the fundamental, and the amplitudes of the peaks at the location of the fourth
and fifth harmonics are ~1% and ~0.7% of the fundamental, respectively. Thereisno clear
evidence of the third harmonic and peaks at higher spatial frequencies are not located at multiples
of the fundamental frequency. The precise effect of the modification of the profiles on the
harmonic content is unclear. Setting equal to zero the amplitude of the Fourier transform of the
profile below a frequencof 0.33um™* leads to the PSD in Fig. 2d, and the inverse Fourier
transform gives a computed residual roughness that is missing the low spatial frequency

components. A segment of this residual roughness is shown in Fig. 2b.

B. BRDF Measurements and Computations

We measured the BRDF for laser light incident on a centered spot on each of the two
samples with both s and p polarization. We used a BRDF instrument, the Goniometric Optical
Scatterinstrument (GOB,>* with a circular aperture angk,, of 0.7°, a scanning step angle of
0.5°, a convergence angle of the incident light of,~dnd a spot size of ~1 mm in diameter. The

BRDF is defined by
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BRDE - _radiance dP/de, - Py/Qy (46)
irradiance  Pcosd,  P.cosd,’

wheretheindicesi and s stand for incidence and scattering, respectively, P isthe power, and 6, is
the polar angle of the scattering direction, and Q) isthe solid angle. Figs. 3 and 4 show the
results of these measurements, which do not exhibit the apparent dependence on polarization
previously found.* The measured BRDF actually corresponds to the convolution of the function
defined in Eq. (46) with the instrument signature, which reduces the magnitude of the peaks
relative to the background.

The measured power in the diffraction peaks relative to the power in the specular peak,
shown in the graphsin Figs. 3 and 4, arefound in Table 1. They are compared to the
corresponding computed results obtained from the Beckmann theory, using Eq. (9) for the perfect
sinusoid and Eqg. (19) for measured profiles, and from the Rayleigh theory using Eq. (21). The
power differs from the BRDF by a constant factor and by the cosi, in the denominatorsin Eq.
(46). For the perfect sinusoid the Rayleigh method gives essentially the same results as the
Beckmann method, which differ significantly from the power in the peaks of the measured
curves, especially for the higher orders. There also islittle difference between the two
polarizations, as seen also in Table 1. A discussion of limitations of this approach can be found
in Ref. 17.

The complex dielectric constant of gold at A = 0.6328um is 0.166 + 3.15i, and that of
aluminum is 1.51 + 7.68%. A finite-conductiyitheory? might improve the agreement between

computed and measured BRDFs. For a perfect sinusoid of infinite extent illumipateuame
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wave, all the power is concentrated in the direction of the diffraction peaks. On the other hand,
the experimental data show substantial background scattering between the peaks. In addition, the
measured power in the higher-order peaksis much larger than the power computed for a perfect
sinusoid.

We consider two possible sources of the background scattering: the window that limits
the incident beam and the residual roughness of the sinusoid. If the incident beam is truncated or
has any spatial distribution other than plane wave, diffraction due to the beam profile or window
will occur and may be significant. Also arealistic window would include the effects of the
curvature of the phase front since the beam is converging at the sample and focused on the
detector circle. Itisdifficult to represent the actual beam in a calculation, partly because the
illuminated spot is not an infinite strip and solving afull three-dimensional scattering problem is
much harder than the smplified problem we have addressed here. Nevertheless, we still need a
windowing function in the integral in Eq. (19) because a step window gives rise to tails that
decrease much more slowly than other windows.?*

The instrument signature®® shown in Fig. 5 was measured by scanning the 0.7 degree
aperture across the beam in the absence of asample. This signatureisbelow 10 sr? for angles
larger than 2°and is much smaller than the background scattering level measured with the
holographic grating, shown in Figs. 3 and 4. Therefore, instrumental artifacts are not responsible
for the background level measured between the diffraction peaks. Furthermore, since the
instrument signature includes the effect of the physical window function [see Eq.(19) with
h(x)=0] convolved with the 0.7 degree aperture, the physical window function does not

contribute to the measured background scattering level either.
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To include the effect of the residual roughness on the background scattering we have
calculated the scattered intensity distribution numerically by using Eq. (19), substituting for h(x)
the measured profiles corrected for the apparent distortion of the period. We have also used the
Schwartz window defined in Eg. (20) with a parameter o = 0.1 and awidth L equal to the length
of each profile. The physical aperture was taken into account by integrating the computed
intensity over a0.7° interval centered at the scattering angle. We average the five BRDF curves
computed for the profiles taken on each sample and compare them to the measured BRDF curves
for s-polarized light in Figs. 6 and 7, where we have matched the top of the specular peak of the
computed BRDF to that of the measured one. The values of the peaks in the computed BRDF
curves are also found in Table 1. Where the comparison is not obscured by the background in
the calculated results, the correlation between the measured peak magnitudes and the calcul ated
onesisgood. The measured peaks are higher than the calculated peaks but not excessively so.

To gain some insight into the variation of the power in the peaks with the rms roughness
we perform a numerical experiment and compare the computed power for one of the modified
profiles obtained for the aluminum sample with that obtained from profiles that are scaled by
increasing and decreasing the heights at all points by 5%. Variationsin the height of the profiles
are significantly larger than the 1% estimated error in the z-coordinates, as seen in Fig. 2. The
results are shown in Table 2. To exhibit the variations in the power in the specular peak, we give
the power in the peaks as fractions of the incident power. The changesin the power in the peaks
of order 1 and -1 are much smaller than those of that in the specular peak because the parameters
correspond to a maximum of J,(A), so that variations are small. Since J,'(A) = - J,(A), we have a

maximum in the rate of change of the power in the specular peaks.

24



The magnitude of the measured peaks a so depends on the location of the illuminated spot
on the sample. To obtain the computed BRDF curves shown in Figs. 6 and 7 we were careful to
measure the profiles at the same location as the illuminated spot used in the scatter
measurements. We have also measured the light scattered by the surface at a number of
neighboring spots. We again see that there islittle variation of the first-order peaks, so to give an
idea of the variation of the power in the peaks we show in Table 2 the values that correspond to
the extremes of the power in the specular peak. Factors of ~2 in the higher-order peak power
shown in Table 2 can be found both for the numerical experiment and the BRDF measurements.

The experimental background is much smaller than the computed one, which is due to the
two-dimensional nature of the residual roughness. If we assume that the measured profile
corresponds to a one-dimensionally rough surface, al the light scattered by the residual
roughness is found in the plane perpendicular to the lay and is collected by the detector. Since
the roughness actually is two-dimensional, only afraction of the scattered light is collected by the
detector. Theintegral of the PSD for frequencieslessthan f, = 0.01um* is proportional to the

power scattered into the aperture. We note that the one-dimensiongd H50f the measured

profiles falls off appraimately as 22 in the region of the higher frequencies that correspond to

the residual roughness. This implies that the two-dimensional PSD of an isotropic Sj(face,
falls off apprximately as f*3. We compute the power ratio for different value8.afsing Eq.

(42) with the value of.f obtained from Eg. (35) for n = 0 & 6°, and we obtain the

computed values found in Table 3. Comparison with the ratios obtained from the background

portions of the curves shown in Figs. 6 and 7 agree well enough to conclude that the reduced

background in the measured BRDF is due to the two-dimensional nature of the residual
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roughness. The computed peak intensities should remain unchanged because the diffraction
peaks are a consequence of the one-dimensional grating profile.

The Beckmann theory that has been commonly used to understand scattering experiments
iIsascalar theory that uses the Kirchhoff approximation. The limits of the validity of the
Kirchhoff approximation for scattering from sinusoidal gratings has been discussed by Wirgin.
The intensities of the higher-order diffraction peaks for s-polarized light are similar for both
specimens, and much larger than expected from the Beckmann theory for a perfect sinusoid.

The most likely reason for the discrepancy between the measured and computed
magnitudes of the higher-order peaks is the presence of harmonics in the profile. The PSDs of
the measured profiles clearly show several harmonicsin addition to the fundamental. The first-
order diffraction peak of the nth harmonic of the sinusoidal profile occurs at the same angle as
the diffraction peak of order n of the fundamental sinusoid and the intensity due to the former
may be much larger than that due to the latter.>* A number of different harmonics can contribute
to the same diffraction peak, as seen in Eq. (16). The background noisein the profile and the
fluctuationsin the stylus speed limit our ability to determine the higher-order harmonicsin the
samples, which could be used to compute the light scattered by a simulated profile without
background noise. The calculations performed using the Beckmann theory on profiles obtained
from stylus measurements do not show the intensities of the higher-order peaks above the
computed background noise. The sharpness of the measured peaks in the BRDF curves indicates
that the period of the sinusoids on the samples does not vary as much as indicated by the

measured profiles.
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4. Summary

We have investigated the scattering of laser light from two sinusoidal holographic
gratings, one gold-coated and the other aluminum-coated. Measured and computed results are in
reasonably good agreement for the lower-order peaks, as shown in Table 1.

These samples have limitations such as lack of homogeneity, residual roughness, and
harmonic content that preclude their use to verify the linearity of BRDF instruments. The power
scattered into the different peaks differs from the predictions using measured profiles by varying
amounts to nearly afactor of two, as shown in Table 1. It isan open question whether the
samples can be manufactured with sufficient uniformity of profile and sufficiently low residual
roughness that reproducible measurements of peak intensities can be obtained over, say, seven
orders of magnitude or more. The introduction of harmonics of predetermined amplitude and
phase relative to the fundamental sinusoid could be used to produce peak intensities of different
magnitudes.

The background in the measured BRDF is much smaller than the one computed via the
Beckmann theory from the measured profiles. Thisis explained by the two-dimensional nature
of the residua roughness, which isimplicitly assumed to be one-dimensional in the calculation
of the BRDF from the measured profile. Also the light beam profile can contribute to the
background, but here we estimate that this contribution is negligible due to the sharpness of the
instrument signature.

The magnitudes of the higher-order diffraction peak intensities are much larger than those
predicted for a perfect sinusoid. We expect these peaks to arise from harmonicsin the profile,

but fluctuations in the speed of the stylus with respect to the sample, varying amplitude of the

27



sinusoid, possible distortion due to stylus tip shape, and background noise have kept us from
finding their amplitudes and relative phases, although the amplitude of the second, fourth and
fifth harmonics can be determined from the PSDs. However, it will be difficult to measure
surface profiles with sufficient accuracy to calculate the weaker diffraction peaks accurately.
Future work along these lines could include measurement of three-dimensional surface
topography maps* that characterize the random roughness more correctly, which could then be

used to compute the background scattering level.

Wethank T. B. Renegar for the profilometer measurements.
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Glossary of mathematical notation

a, D, K, a: amplitude, period, wavenumber, and phase of the sinusoid

h(x), h(x,y): surface profile

J,, |, Bessal function and modified Bessel function of the first kind of order n

k, A: wavenumber and wavelength of the laser light

L: width of illuminated strip

sinc: sinct = sing/g

S(f,), S(f,.f,), S(f): PSDs of asurface

V,, Vi, V,: components of the difference between the incident and scattered wavevectors
w: width of a Gaussian function

W: windowing function

p, P: electric field amplitude and power

0;, @;, 0, 9. polar and azimuthal angles of the incident and scattering directions (the azimuthal
angle of the incident direction is assumed to vanish)

0, angle for the diffraction peak of order n

o, T, T,, T,: rmsvalue and autocorrelation length(s) of residual roughness
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Tablel. Measured and Computed Diffraction Peak | ntensities Relative to the Specular Peak | ntensity

Diffraction peak  Measured, aluminum? Measured, gold® Beckmann,® profiles Beckmann,® Rayleigh,® sinusoid
order  angle s-pol p-pol spol p pol aluminum gold sinusoid spol p pol
-11  -70.0° —€ —€ —°¢ —€ —9 —9 5.68x10%® 5.22x10® 6.19x10%
-10 -57.6° —° —° —°¢ —° —9 —9 1.87x10% 1.75x10% 2.01x10%
-9 -48.6° 1.10x10° 2.18x10° 5.58x107 8.12x10’ —9 —9 1.42x10%®  1.34x10 1.50x10%
-8 -40.9° 5.22x10° 8.68x10° 1.89x10° 2.61x10° —9 —9 4.66x10"  4.43x10™ 4.90x10™
-7 -34.00 2.21x10° 2.98x10° 6.76x10° 8.95x10° —9 —9 8.25x10° 7.89x10° 8.63x10°
-6 -27.7° 5.16x10° 6.11x10° 2.01x10° 2.43x10° —9 —9 8.62x10"  8.29x107  8.96x10’

-5 -21.7 5.84x10°> 7.39x10° 2.13x10* 2.37x10* 3.40x10* 3.43x10* 5.47x10°> 5.30x10° 5.66x10°
-4 -16.0° 2.59x10° 2.85x10° 4.67x10° 4.90x10®° 2.13x10%® 3.36x10° 2.09x10° 2.04x10° 2.16x10°

-3 -10.4 —! —! — —! 4.08x10° 6.15x10% 4.59x10?  4.48x10* 4.70x10?
-2 -4.9° —1 —1 —f —1 0.406 0.585 0.508 0.49 0.517
-1 0.6° 2.35 2.46 2.77 2.84 1.78 2.36 211 2.08 2.13

0 6.0° 1 1 1 1 1 1 1 1 1

1 11.5° 2.30 2.40 2.77 2.84 1.78 231 2.10 2.08 2.12

2 17.1° 0.583 0.626 0.728 0.753 0.377 0.562 0.478 0.469 0.487
3 22.9 5.82x10? 6.49x10% 7.24x10* 7.61x10* 3.52x10* 5.63x10%> 3.89x10? 3.80x10* 3.99x10?
4 29.0¢ 1.92x10% 2.10x10° 3.57x10° 3.80x10° 1.41x10%® 2.75x10%®° 1.51x10° 1.47x10° 1.56x10°
5 35.4 2.70x10* 2.99x10* 1.45x10* 1.61x10* —9 3.10x10* 3.13x10°  3.01x10°> 3.25x10°
6 42.£ 1.76x10* 2.24x10* 1.92x10° 2.38x10° —9 —9 3.51x10"  3.35x107  3.69x10’
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7 50.3° 4.38x10° 7.41x10° 5.70x10° 8.38x10° —9 —9

8 59.8° 5.50x10° 1.33x10° 1.26x10° 2.12x10° —9 —

9 73.5° 5.94x10" 1.78x10° —¢ —¢ —9 —9

2.02x10°
4.94x10%

2.56x10%

1.90%x10°
4.56x10%

2.25x10%

2.15x10°
5.35x10"%

2.94x10%

#The uncertainty of each measured peak intensity is about 2% of the value.
P\ alues calcul ated from measured profiles using Eg. (19).

‘Vaues calculated for a perfect sinusoid using Eq. (9).

v alues calculated for a perfect sinusoid using Eq. (21).

*Measured peak value obscured by the background.

"Diffracted peak obscured by instrument receiver.

9Computed peak value obscured by the background.

33




Table 2. Computed and Measured Power in the Peaks Relative to the Incident Power
Order Computed® (95%) Computed® (100%) Computed® (105%) Measured® Measured
-4 1.5x10* 2.2x10* 3.3x104 4.84x10*  3.4x10*
-3 4.8x10° 6.2x10° 7.9x10° —¢ —°
-2 5.5x102 6.3x10°2 7.4x102 —° —°
-1 0.28 0.29 0.29 0.29 0.29
0 0.20 0.16 0.13 0.11 0.13
1 0.28 0.28 0.29 0.29 0.29
2 5.0x102 5.9x10°2 6.8x102 7.9x102 7.1x102
3 4.3x10° 5.5x10° 7.0x10° 9.1x10°  7.4x10°
4 1.3x10* 2.0x10* 2.8x10* 4.5x10* 1.7x10*

%Calculated from scaled measured profiles of the aluminum sample using Eq. (19).
®Measured at different spots of the aluminum sample, s polarization.

‘Diffracted peak obscured/linstrument receiver.
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Table 3. Background Scattering Ratio

Scatteringangle | 15° | 30° | 45° 60° 75°

Computed ratio® | 0.045 | 0.017 | 0.011 | 0.0090 | 0.0080
Measured ratio® | 0.07 | 0.02 | 0.02 | 0.02 0.01

dCadculated from Eq. (42).
Averages of ratios determined from Figs. 6 and 7 between val ues obtained from measured BRDF curves and those computed

from measured profiles. The relative uncertainties in these comparisons are ~30%.
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Figure Captions

Fig. 1. Diagram showing the sample configuration and the sign convention for the angles
of the wavevectors of the incident and scattered waves.

Fig. 2. Partial profile of the aluminum-coated grating measured with a 1-um tip and PSD
of the full profile: (a) modified profile, (b) residual roughness computed from the Fourier
transform of the profile, truncated below a spatial frequency of 0.33 um , and (c) and (d) the
corresponding PSDs.

Fig. 3. Measured BRDF for the scattering of s- and p-polarized light by the aluminum
sample. The peak power relative to the power in the specular peak is found in Table 1.

Fig. 4. Measured BRDF for the scattering of s- and p-polarized light by the gold sample.
The peak power relative to the power in the specular peak is found in Table 1.

Fig. 5. Instrument signature.

Fig. 6. Measured BRDF (s polarization) and BRDF computed from measured profiles
using the Kirchhoff approximation for the aluminum sample. The peak power relative to the
power in the specular peak is found in Table 1.

Fig. 7. Measured BRDF (s polarization) and BRDF computed from measured profiles
using the Kirchhoff approximation for the gold sample. The peak power relative to the power in

the specular peak is found in Table 1.
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Fig. 3. Measured BRDF for the scattering of s- and p-polarized light by the aluminum sample.

The peak power relative to the power in the specular peak isfound in Table 1.
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Fig. 4. Measured BRDF for the scattering of s- and p-polarized light by the gold sample. The

peak power relative to the power in the specular peak isfound in Table 1.
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Fig. 6. Measured BRDF (s polarization) and BRDF computed from measured profiles using the
Kirchhoff approximation for the aluminum sample. The peak power relative to the power in the

specular peak isfound in Table 1.
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Fig. 7. Measured BRDF (s polarization) and BRDF computed from measured profiles using the
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