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ABSTRACT

A goniometric optical scatter instrument has been developed at the Na-
tional Institute of Standards and Technology which can readily perform mea-
surements of optical scatter and its associated polarization in directions out of
the plane of incidence. This paper describes the coordinate transformations that
are required to operate such a goniometer with respect to sample-specific coor-
dinates. We present new methods for measuring the 3 x 3 non-handed Mueller
matrix elements using dual rotating half-wave retarders, and present a subset of
the Mueller matrix, referred to as the bidirectional ellipsometric parameters which
have been shown to simplify the interpretation of the data. The results of out-of-
plane Mueller matrix and bidirectional ellipsometric measurements from a tita-

nium nitride layer on silicon are presented.

I. INTRODUCTION

Optical scattering has been shown to be a powerful diagnostic technique for charac-

terizing optical quality surfaces.! The fundamental description of optical scattering can
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be encapsulated in the bidirectional reflectance distribution function (BRDF'), defined as

the reflected radiance L, normalized by the incident irradiance F;, given by?

f (61, ¢156r, ¢1) = L/ B = (d®,/dQ)/(®; cos b ), (1)

where d®,/d) is the reflected power per unit solid angle, ®; is the incident power, 6,
and ¢, are the polar and azimuthal angles of the reflected light, and 6; and ¢; are the
polar and azimuthal angles of the incident light. Although the BRDF is often reported
as a polarization-averaged quantity, it should in fact be a Mueller matrix F;, relating the

reflected Stokes-radiance vector L, to the incident Stokes-irradiance vector Ej;:

L, = F,E;. (2)

Calculations, and recent experimental results, have demonstrated that a wealth of infor-
mation is included in the polarimetric properties of surfaces.®~'2 Even more so, the po-
larimetric properties of scattering out of the plane of incidence can allow the distinction

amongst different types of defects on smooth surfaces.’

It is common to measure the light scattering properties of samples in directions
within the plane of incidence, since this configuration requires the least hardware and
is the easiest to construct. Instruments capable of out-of-plane measurements have been
constructed, but tend to be large and much more difficult and expensive to fabricate,
often since the source and detector are both expected to move.'® In this paper, we de-
scribe an automated scatterometer, capable of measurements out of the plane of inci-
dence, which has a fixed source and a detector that rotates about a single axis.!*® Ro-
tation of the sample about three axes, and translational motion along two, is sufficient
to fully select all possible incident/viewing direction combinations on any location on a

sample. Much of the difficulty of the design of this instrument is not mechanical, but
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rather conceptual, since one must know the transformation from the goniometer coordi-
nates to the incident and scattering directions with respect to the sample and the inverse

transformation.

In Sec. II, we describe the instrument. In Sec. III, the algorithms for converting
between the goniometer coordinates and the sample coordinates are derived. Section
IV describes procedures for performing polarimetric measurements of samples. Finally,
in Sec. V, some experimental results of out-of-plane Mueller matrix measurements are

presented.

II. DESCRIPTION OF THE INSTRUMENT

Figure 1 shows an overall schematic diagram of the goniometric optical scatter in-
strument. Light from one of three lasers, HeNe (wavelength A = 633 nm), frequency-
doubled Nd:YAG (A = 532 nm), or HeCd (A = 442 nm or 325 nm), passes through a
power stabilizer, a chopper, a polarizer, a retarder (currently A/2) mounted on a com-
puter controlled rotation stage, a lens (focal length = 100 mm), and a pinhole (diameter
= 50 pm), before being directed and focussed with a super-polished concave mirror (fo-
cal length = 230 mm) through the center of a goniometer. The light is focused to the

solid-angle-defining aperture of a receiver.

Figure 2 shows a schematic diagram of the goniometer. It is a three-axis four-angle
goniometer with a being the angle of rotation of the sample about a vertical axis, 8 be-
ing the angle of rotation of the sample about a horizontal axis which moves with «a, v
being an angle of rotation about the sample azimuth (moving with a and ), and ¢ be-
ing the angle of rotation of the detector about the vertical axis. Whena = g = v =
d = 0, the sample is positioned so that the light is incident at normal incidence and the

detector (if it were not blocking the incident light) is positioned to collect the specularly
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reflected light. With this configuration nearly any combination of incident and scattering
directions can be achieved, being limited only by obscuration of either the incident or
scattered beam by the sample mount and 3 rotation stage (at angles § > 87° on one side
of the sample and 65° on the other) or occultation of the incident beam by the receiver

(within 5° of retroreflection).

Figure 3 shows a schematic of the receiver. A computer-controlled translation stage
selects one of three solid-angle-limiting apertures (4; = 38.4 mm?, Ay = 0.79 mm?,
and A3 = 0.032 mm?) to optimize required angular sensitivity or collection efficiency.
These apertures are approximately 550 mm from the illuminated area of the sample. A
lens (L) is positioned behind the apertures to focus the sample plane onto a manually
adjustable iris field stop (F'S). A linear retarder (WP) (currently A/2) is mounted onto a
computer controlled rotation stage (ROT). A Glan-Thompson polarizer (POL) mounted
onto a manual rotation stage follows the retarder; during measurements, the polarizer is
maintained fixed. After passing through the field stop, the light is collected in an inte-
grating sphere (IS). The integrating sphere has two output ports, onto which two detec-
tors, a silicon photodiode (SiPD) and a photomultiplier tube (PMT), are mounted. The
PMT has a manual shutter to prevent exposure to excessive light levels. This receiver
design has a linear dynamic range of about 15 orders of magnitude (in units of st™1), a
maximum angular resolution of 0.02°, and a polarization extinction factor of about 10%.
The instrument signature is Rayleigh-scattering-limited within about 1° from the specu-

lar direction.1%:16

One drawback of this instrument design is that the specular beam is not effectively
captured. The field of view of the receiver includes not only the sample, but also part
of the surrounding laboratory, which can be illuminated by scattered light from the un-

captured specular beam. If the surroundings are entirely absorbing (painted black), and
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the field of view is sufficiently small, then this drawback may not be serious. In this in-
strument, the FS limits the field of view at the sample position to be adjustable from 3
mm to 38 mm, and is most typically set to about 10 mm. The laser sources must also be
kept to a power that will not physically damage the surroundings, and adequate precau-

tions must be taken to guarantee the eye safety of personnel.

The polarizers and retarders are aligned using a procedure that guarantees that
their axes are either parallel or perpendicular with respect to the goniometer axes. Ini-
tially, the receiver polarizer and the two retarders are removed from the system. A sam-
ple is placed in the sample holder and rotated into Brewster’s angle 0 (o« = 6g and
B = 0). The incident polarizer is then adjusted to minimize the reflected signal. Next,
the sample is removed, and the receiver is positioned in the “straight-through” position
(6 = 180°). At this time, the receiver polarizer is mounted in its holder and adjusted
to minimize the signal passing to the detector. Finally, the two retarders are mounted
consecutively on their rotation stages, each being adjusted to minimize the signal before
mounting the other. In this manner, the incident light is p-polarized and the detector
only detects s-polarized reflected light, when the instrument is performing in-plane mea-
surements (3 = 0). Other in-out polarization combinations are obtained by rotating the

retarders, using this alignment point as a reference.

III. TRANSFORMATIONS

The sample reference frame coordinate system is shown in Fig. 4. It is the purpose
of Sec. ITI.A to derive the expressions necessary to convert the goniometer angles, a, 3,
~, and ¢, to the sample coordinate system angles, 6;, ¢;, 6;, and ¢.. In the following sec-

tion, Sec. III.B, the transformation will be inverted. Finally, the relationships between
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the polarization axes in the sample and laboratory coordinate systems will be derived in

Sec. II1.C.

A. Converting Goniometer Angles to Sample Reference Frame Angles

We begin by defining two coordinate systems, using unit basis vectors {&',9’, 2'}
(see Fig. 2), which are fixed with respect to the laboratory, and {&, ¥, 2} (see Fig. 4),
which are fixed with respect to the sample. When a = 8 = v = 0, the two bases are
identical. By applying a rotation of angle v about 2’, followed by a rotation of angle 3
about &', and lastly, a rotation of angle a about §’, the two bases can be related for ar-

bitrary orientation of the sample holder:

& = (cosa cosy — sina sin 8 siny)&' — (cos B siny)§’ — (cosy sina + cos a sin 3 siny)2’,
(3a)

y = (cos~y sina sin 3 + cosa sin~y)&' + (cos B cosv)y' + (cosa cos~y sin 8 — sina sin )2/,

(3b)
and
2 = (cosBsina)z’ — (sin B)§' + (cosa cos B)2'. (3¢)
From Fig. 2, it can be seen that the incoming propagation direction is
ey = -2/, (4a)
while for an arbitrary § the detection direction is given by
/Acr —2'sind + 2’ cosd. (4b)

It is now straightforward to determine the polar and azimuthal angles of the incom-
ing and outgoing light. For the polar angles 6; and 6., the inner products of —k; and k,
with the surface normal 2, respectively, give the cosines of 6; and 6,, so that

~

0; = arccos(—k; - 2) = arccos(cos a cos 3) (5a)
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and

0, = arccos(i{ir - 2) = arccos(cos 3 sina sin é + cosa cos 3 cos §). (5b)

For the azimuthal angles, ¢; and ¢,, we use the projections of k; and k, onto & and y:

~

¢; = arctan(—k; - &, —/Aci )

(6a)
= arctan(— cos vy sin @ — cos asin B sin-y, cos a cosysin 8 — sin asin ),
and
¢ = arctan(fcr @k 9)
= arctan[ — cosd (cosvy sina — cosa sin 8 sin~y) +
sind (cosa cosy — sina sin 8 sinvy), (6b)

sind (cosy sina sin B + cosa siny) +

cos é (cosa cosy sin B — sina sinvy)],

where the function arctan(a,b) returns the complex argument of a + ¢b.

B. Converting Sample Reference Frame Angles to Goniometer Angles

In Sec. III.A, we have calculated the sample-relative scattering angles when the go-
niometer angles are known. However, it is often common to ask the opposite question,

since one is generally interested in controlling the goniometer with sample-specific angles

(6:, ¢i, 6;, and ¢;).

Recognizing that ¢ is the angle subtended by the incoming and outgoing beams,

we can readily solve for it. Working in a coordinate system natural to the sample it is
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apparent from the standard formulae for polar-rectilinear transformations that

—k; = sin 6, cos @i & + sin 6; sin ¢; 4y + cos 6; 2 (7a)
and

k. = sin 6, cos ¢ & + sin O, sin ¢, 4§ + cos b, 2. (7b)

Again, we use the inner product to calculate the cosine of the subtended angle,

cos§z/%i-fcr

= cos 6; cos 8, + cos ¢; cos ¢, sin b; sin 0, + sin ¢; sin ¢, sin 6; sin 6,.

Eq. 5(a) allows us to eliminate 38 from Eq. 5(b) and solve for the rotation of the sample

about the vertical axis of the goniometer, a:
a = arctan [(cos 0, — cos 6; cos §)/(cos 6; sin §)] . (9)

By recognizing that ¢’ is a unit vector pointing in the vertical direction in the labora-
tory, that

g = — (ki x ky)/ i < k.|, (10)

that Z is the surface normal, and that ¢’ and 2 are both perpendicular to the 3 axis, 3

can be derived from

(11)
= sin(¢, — ¢;)sin 6, sin 6; / sin 6,

where we have used sind = |/A<il X /Acr| The easiest way to solve for the rotation of the
sample about its normal, v, is to calculate ¢{ or ¢, for v = 0 and then set v = ¢, — ¢, =

¢; — ¢!. Therefore, from Eq. 6(a),

v = ¢; — arctan(— sin «, cos asin 3). (12)
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The expressions in Egs. 9 and 11 lead to intermediate singularities when é = 0 (retrore-

flection), for which & = 6; and 8 = 0.
C. The Polarization Coordinates

We will work under the assumption that the most natural basis set for studying the
polarization of scattered light contains the § and p vectors associated with the plane
of incidence for the incident light and the plane of exitance for the exiting light. The
planes of incidence and exitance are defined by the sample normal and k; and /Acr, respec-
tively. The basis vectors used to describe the polarization that are most natural in the

laboratory frame are therefore given by

5=, (13a)
and
pi =1/, (13b)
for the incident light, and
=g (13¢)
and
pL = —&'cosd + 2'sind, (13d)

for the scattered light. When measuring the polarization properties of out-of-plane op-
tical scattering, we must be aware that the coordinate system natural to the sample will
require rotation of the incoming and outgoing polarization analyzers so that they remain

in the sample coordinate system. Therefore, we define a new set of basis vectors
5 = (ky x 2)/|k; x 2], (14a)

and

i)i = ];ii X .§i, (14b)



for the incident light, and

5, = (ky x 2)/|k; x 2|, (14c)

and

>

Ds = k: x 5; (14d)

for the scattered light. It can be verified that the four sets of unit vectors, {3;, pi, /Aci},
{3:, Pr» /Acr}, {3, p!, /Aci}, and {5, p!, /%r}, form right-handed orthogonal coordinate sys-
tems. Furthermore, for measurements in the plane of incidence, the primed polarization
coordinates and the unprimed polarization coordinates are the equivalent. We need to
know the angle 9; that §; and p; are rotated with respect to 5/ and p{, and the angle ¥,

that §, and p, are rotated with respect to 5, and p.. As usual, these angles can be de-

termined by inner products with each other:

cos; = & - 5, (15a)

sins = L&, (15b)

cos P, = 5. - &, (15c¢)
and

sint, = p. - 5. (15d)

Using Eq. 3 and 4, the angles v; and 1, can be readily shown to be

¥; = arctan(cos ¥, sin ¢;) = arctan(— sin 3, cos Bsin a), (16a)

and
¥, = arctan(cos ¢,,sin ¥, ) = arctan([sin 3, cos B sin(a — §)]. (16Db)
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IV.NON-HANDED POLARIMETRIC MEASUREMENTS

Although the description of the instrument and the transformations described in the
preceding sections are relevant to full polarimetric measurements of surface scatter, re-
cent results have indicated that a substantial amount of information can be found from
just the non-handed elements of the Mueller matrix.!”*® Furthermore, measurements of
the full 4 x 4 Mueller matrix are often prone to large uncertainties;!® reducing the num-
ber of parameters being sought can help to reduce these uncertainties. Measurements
of the full Mueller matrix are described in detail elsewhere and do not need repeating
here.2? In this section, details associated with the measurement of the non-handed 3 x 3

Mueller matrix are reviewed.

A. Bidirectional Ellipsometry Parameters

It is often useful to condense the terms in the Mueller matrix from sixteen to
a more manageable number. Previous work has demonstrated that specific incident
polarizations (usually p) are particularly useful for distinguishing between different
sources of scatter near a surface, especially when viewing the sample out of the plane of
incidence.®"17:1® Although one can present the Stokes parameters for the scattered light
for a fixed incident polarization, it has been found to be particularly useful to present
the results using bidirectional ellipsometry parameters, for which 7 represents the prin-
ciple angle of the polarization and F;, represents the degree of linear polarization. For a
number of scattering mechanisms (for example, scatter of p-polarized light from micror-
oughness of non-metallic materials), P, ~ 1, so that the value of 1 essentially describes
the polarization.

11



The angle 7(P) [(*)] that the principle axis of the polarization ellipse makes with re-
spect to the § axis when the incident light is p-polarized (s-polarized) can be determined

from the Mueller matrix to be?!
’I’](p) = arctan(M21 — MQQ,M31 — M32)/2 (17&)

and

77(5) = arctan(Ms1 + Maaz, M1 + M32)/2. (17Db)

As a measure of the degree to which the light is linearly polarized, the degree of linear

polarization is

PL — (fmax - fmin)/(fmax + fmin) (18)

where fiax and fmin are the maximum and minimum scattered light signals measured
as an analyzing linear polarizer in front of the detector is rotated. For linearly polarized
light, , = 1, and for purely depolarized light or completely circularly polarized light,
P, = 0. From the Mueller matrix elements, the degrees of linear polarization for p- and

s-polarized incident light are
(p) _ 2 271/2
P o= [(Ma1 — Ma2)® + (Ms1 — Ms2)* 7% /(M1 — Mi2) (19a)

and

PI(,S) = [(Ma1 + M22)2 + (Ms1 + M32)2]1/2/(M11 + M), (19b)

respectively. By placing attention on the principle axis of the polarization ellipse, cer-
tain issues can be ignored. Foremost of these is the scattering from other objects in the
room which are illuminated by the specular beam. This light is most likely to be highly

depolarized, and therefore will have little effect on the measurement of 7.

The complex ratio of the p-polarized component to the s-polarized component is of-

ten expressed as tan(¥)exp(¢A). If we assume (and this is often not correct) that there
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is no depolarization, then we can relate the bidirectional ellipsometry parameters n and

P, and the standard ellipsometry parameters A and ¥:
tan(2n) = — tan(2¥) cos A (20a)

and

(1 — P2)Y? = sin(2¥) sin A, (20b)

Egs. 20(a—b) can be inverted to yield
sin? A = (1 — P?)[1 + tan®(27)]/[1 + tan®(2n) — P7]. (21b)

and

¥ = arctan[— sin(27) cos A, cos(27)]/2. (21a)

B. The w:4w Method

Measurements of the non-handed 3 x 3 Mueller matrix using half-wave retarders
before and after the sample is straightforward using the techniques outlined by Azzam?2°
for determining the full 4 x 4 Mueller matrix with quarter-wave retarders. The retarders

are rotated, that on the receiver at four times the rate of that on the source, to yield a

signal as a function of retarder rotation. The signal can be shown to be given by

Swtiw(€) =Myy — My cos(4€) — My, cos(12€)/2 — Mis cos(12€) /2
+ My cos(16€) — My cos(20€)/2 + Mis cos(20€)/2 — Mys sin(4€)
+ Mo sin(12€)/2 — Mas sin(12€)/2 + My sin(16€) — Mas sin(20€) /2 )
+ Msy sin(20€)/2,
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where ¢ is the rotation angle of the input retarder. Eq. 22 is of the form

S(&) =) _lejcos(j€) + s sin(5¢)), (23)

J

so that a Fourier analysis of the signal will yield the values of ¢; and s;. The Mueller

matrix elements of the sample can be determined from the ¢; and s; to be:

Co —c4 —84 n.d.
Ci6 —C12 — C20 812 — 820 n.d.
M = . (24)
s16  —S812 + 820 —ci2+ ¢ n.d.
n.d. n.d. n.d. n.d.

Since half-wave retarders are used, the terms in the fourth row and fourth column are
not determined (n.d.). In practice, sixteen measurements are performed, while the in-
cident retarder is rotated from 0° to 90° x (15/16) = 84.375°, and while the receiver
retarder is rotated from 0° to 360° x (15/16) = 337.5°. The sixteen measurements are

then Fourier transformed to yield the ¢; and s;.

There may exist errors in the retardance of the polarizers of §; and 45 for the first
and second retarders, respectively. We can determine some of the effects these errors
may have on the measurement of M by calculating the expected signal like that for
Eq. 22, and applying the results of Egs. 23 and 24 and assuming that M is the unit ma-
trix. Although the general result is rather complicated, we can expand the result in pow-

ers of 41 and ¢, and arrive at the lowest-order result

1 5; /4 0 n.d.

B —6%2/4 1-—62/4—462/4 0 n.d.
M=1 0 | —62/4—62/4 nd. (25)

n.d. n.d. n.d. n.d.
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Similarly, one can calculate the n(®) and PIEP) that is expected when one measures a high
quality polarizer as a function of the rotation angle of the polarizer, 8. One arrives at
the result that no error is created in 7(®), and that the measured degree of linear polar-
ization is

PP = (4 - 62)/[4 + 82 cos(26)]. (26)
C. The w:3w Method

The same measurement may be carried out with the receiver retarder rotating at

three times the rate of the incident retarder. In this case, the signal is given by

Sw:3w(§) :Mll - M12 COS(4§) - M22 COS(8§)/2 - M33 COS(8§)/2

+ My cos(12€) — Map cos(16€)/2 + Mss cos(16€)/2 — M3 sin(4€)

(27)
+ M23 sm(8§)/2 — M32 sm(8§)/2 + M31 51n(12§) — M23 51n(16§)/2
— M32 51n(16§)/2,
from which the Mueller matrix can be found to be
Co —c4 —84 n.d.
Ci12 —Cg — C1¢ 88 — S1¢ n.d.
M = 28
s12 —$16 —8s —cg+cig n.d. (28)
n.d. n.d. n.d. n.d.
Similar analysis of errors can be carried out for the w:3w method as for the w:4w
method. A measurement of the unit Mueller matrix will yield
M=1 0 1= (61— 6)2/4 n.d. (29)
n.d. n.d. n.d. n.d.
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Once again, measurement of a polarizer yields no error for 7(P), and a measured degree

of linear polarization the same as Eq. 26.
D. Uncertainties

A series of consecutive measurements of the Mueller matrix with no sample present
should yield the unity matrix, and an estimate of the random and systematic uncertain-
ties in Mueller matrix measurements. Such a measurement was carried out with eighty

measurements using the w:4w method and yielded

1 (5.2+£1.7) x107* (1.6 +£0.7) x 10~* n.d.

(8.1 £0.9) x 10~* 0.9995 4 0.0001 (4.0 +£0.9) x 10* n.d.
(—4.24+1.7) x 107* (2.2£0.3) x 107*  1.0008 £0.0001 n.d. |’

n.d. n.d. n.d. n.d.

where we have normalized the elements to M;;. The uncertainties quoted above are the
standard deviation of the eighty measurements, and therefore are an indication of the
random uncertainty for a single measurement. The deviation of this matrix from the
unity matrix is an indication of systematic errors in the system. Considering horizontal
linearly polarized light, these measurements yielded values of | — n°*Pe°t| = (.08° and

| P, — PEXpeCt| = 0.0007, with standard deviations of o, = 0.01° and op, = 0.0003,

respectively.

As another test of systematic uncertainties that can occur in measurements of the
polarization state, the Mueller matrix of a Glan-Taylor polarizer was measured in trans-
mission as a function of the polarizer rotation angle 8. Each measured Mueller matrix
was then transformed back into that for the unrotated polarizer. These results yielded
standard deviations of ¢, = 0.2° and op, = 0.005. The mean value of F;, deviated from

its expected value of unity by 0.001. The measured polarization angle  and the degree
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of linear polarization therefore typically has expanded uncertainties (kK = 2) of 0.4° and

0.01, respectively, when P, ~ 1.

None of the errors are consistent with those arising from retardance errors in the
retarders as calculated in Sec. IV. Other systematic errors can result from residual bire-
fringence in the lenses used in the spatial filter and in the receiver, reflection from the
focussing primary mirror, wobble during rotation of the retarders, and small degrees of

inhomogeneity?? (non-orthogonality of the eigenpolarizations) of the retarders.

These uncertainties are assumed to be in addition to the random uncertainties as-
sociated with electronic noise, laser fluctuations, and depolarization. The first two of
these can be estimated by measuring a standard deviation of several measurements of
each in-out retarder combination. The uncertainty in a particular variable, be it a ma-
trix element, n, or P, can most easily be estimated by Monte Carlo sampling over the
variation of the measured quantities. These random uncertainties contribute to the total

uncertainty in a root-sum-squared fashion.

When the measured light has P, less than unity, the uncertainty can have a contri-
bution larger than that estimated by the above means. If the light is completely polar-
ized (P = 1), then no additional uncertainty is incurred. However, if the light has some
depolarization (and the light is monochromatic), then the polarization state of the light
fluctuates from one direction to another, being completely polarized in any differential
direction. In fact, speckle-like fluctuations of the polarization state indicate the presence
of depolarization.?® =27 For measurements presented herein, we will not consider further
the uncertainties associated with polarization speckle, being that these uncertainties are

not associated with the instrument but with randomness associated with the sample.
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V. RESULTS

In this section, we illustrate the use of the system by presenting 3 x 3 Mueller ma-
trix measurements of a titanium nitride film grown on a silicon wafer. The measure-
ments were carried out with incident and scattering angles of 6; = 6, = 60° and with
a wavelength A = 532 nm. The Mueller matrix is then measured as a function of the az-
imuthal scattering angle ¢.. Therefore, the probed scattering directions map out a cone
in space, beginning in the specular direction (for ¢, = 0°) and ending in the retroreflec-
tion direction (for ¢, = 180°). All of the measured scattering directions, except those
in the extremes, are out of the plane of incidence. In this arrangement, where 6; = 6.,

the spatial frequencies of roughness that are measured are given by the Bragg relation

f =2sin 6; sin(¢, /2) /.

Figure 5 shows the results of the 3 x 3 Mueller matrix measurements from the ti-
tanium nitride layer. In the upper graph is the unpolarized BRDF, M;;, which varies
more than an order of magnitude in the angular range shown. In fact, just to the left of
the data (near the specular direction, ¢, = 0°), the value of M;; rises many orders of
magnitude; data are not shown near the specular beam since the focus of this paper is

on the polarimetry, and little interesting occurs there.

In the lower graph of Fig. 5 are shown the other elements of the 3 x 3 Mueller ma-
trix, normalized to M;;. Despite the strong dependence of M;; on angle, the normal-
ized Mueller matrix elements vary smoothly from one angle to the next. The curves in
Fig. 5 are predictions of first-order vector perturbation theory for scattering from surface

6

roughness,” assuming a complex index of refraction of 7 = 1.80 4+ 1.28:. The agreement

between the theory and experiment appear to be very good.
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In Fig. 6, the bidirectional ellipsometry parameters n(®) and PIEP) are shown for the
titanium nitride sample. Once again, the theoretical predictions for surface roughness,
shown as curves, model the data very well. Since the model does not have any depolariz-
ing mechanisms, the appearance of PIEP) < 1 for both the theory and the experiment give

strong evidence that the scattered light has a significant degree of circular polarization.

Figure 7 shows the data presented in terms of the standard ellipsometric parameters
A and VU, for p-polarized incident light. The agreement between the theory and exper-
iment does not appear as good as that for the other parameters previously presented.
The determination of A and ¥, given in Egs. 20 and 21, assume that no depolarization
has occured. Although the depolarization is probably very small, the solutions to A and
¥ are rather sensitive to the value of 1 — P;,. Systematic errors discussed above can cause
the measured value of P, to deviate from unity, even when the light is known to be lin-
early polarized. For these reasons, we avoid using the parameters A and ¥, and instead

use the more directly measured parameters n and Fy,.

Further analysis of the data and presentations of data for other samples have been
relegated to other publications.”1718:28 The scattering of light out of the plane of in-
cidence has significant structure that often enables one to identify the source of scat-
tered light, be it from microroughness, particles, or subsurface defects. When analyzed
in terms of the bidirectional ellipsometry parameters, different scattering mechanisms
can be readily identified. Although full in-plane Mueller matrix measurements can be
used to discriminate between different scattering mechanisms, the interpretation of the
data has been found to be more difficult. The analysis of the instrument presented in
this paper should allow out-of-plane scattering measurements to be more readily avail-

able in the future.
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FIGURE CAPTIONS

FIGURE 1 An overall schematic of the goniometric optical scatter instrument

(GOSI). (Not to scale.)

FIGURE 2 A schematic diagram of GOSI’s goniometer, showing the laboratory
coordinate system basis vectors (&', §', and 2'), and the goniometer angles («, 3, v, and

5).

FIGURE 3 A schematic of the instrument’s receiver (not to scale): Aj, Ay, and
Aj; are solid-angle-limiting apertures, mounted on a translation stage T; L is a lens; WP
is a A/2 retarder, mounted on a rotation stage ROT; POL is a polarizer; FS is an ad-
justable iris field stop; IS is an integrating sphere; PMT is a photomultiplier tube; SH is

a manual shutter; and SiPD is a silicon photodiode.
FIGURE 4 The sample coordinate system.

FIGURE 5 The measured 3 x 3 Mueller matrix elements as a function of ¢, for
0; = 6, = 60°for an optically thick titanium nitride film grown on silicon. The upper
graph shows the BRDF, M;;, while the lower graph shows the other eight normalized to
Mi;. The solid curves in the lower graph represent the predictions of first-order vector

perturbation theory.

FIGURE 6 The bidirectional ellipsometry parameters PIEP) and n(P) derived from

the data in Fig. 5.

FIGURE 7 The standard ellipsometry parameters A and ¥ for p-polarized inci-

dent light, derived from the data in Fig. 5.
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