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ABSTRACT 

The resolution of an optical microscope is limited by the optical wavelengths used.  However, there is no 

fundamental limit to the sensitivity of a microscope to small differences in any of a feature's dimensions.  That 

is, those limits are determined by such things as the sensitivity of the detector array, the quality of the optical 

system, and the stability of the light source.  The potential for using this nearly unbounded sensitivity has 

sparked interest in extending optical microscopy to the characterization of sub-wavelength structures created 

by photolithography and using that characterization for process control.  In this paper, an analysis of the imag-

ing of a semiconductor grating structure with an optical microscope will be presented.  The analysis includes 

the effects of partial coherence in the illumination system, aberrations of both the illumination and the collec-

tion optics, non-uniformities in the illumination, and polarization.  It can thus model just about any illumina-

tion configuration imaginable, including Köhler illumination, focused (confocal) illumination, or dark-field il-

lumination.  By propagating Jones matrices throughout the system, polarization control at the back focal planes 

of both illumination and collection can be investigated.  Given a detailed characterization of the microscope 

(including aberrations), images can be calculated and compared to real data, allowing details of the grating 

structure to be determined, in a manner similar to that found in scatterometry. 
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1. INTRODUCTION 

For many years, optical microscopy has been used for determining dimensions of structures and assessing the overlay 

between structures in different layers.  As structures become smaller, such that they become of the order of or smaller 

than the optical wavelength, optical microscopy’s ability to perform this metrology comes into question.  However, other 

optical methods, such as grating scatterometry, diffuse light scattering, and interferometry, have all demonstrated sub-

wavelength sensitivity.  They each owe their sensitivity to the ability for electromagnetic theory to predict their behavior, 

that theory being nearly trivial in interferometry, but more complicated in grating scatterometry or diffuse light scatter-

ing. With today’s computational tools, however, optical microscopy can potentially join this class of sensitive tech-

niques, provided that all aspects of the measurement that determine the response are understood and can be predicted.
1
 

In this manuscript, we outline the theory required to calculate optical images of structures on surfaces and apply it to 

line gratings.  Since the simulations of gratings with the electromagnetic fields is performed using a plane-wave basis, 

we make a point of treating the entire microscope, from source to image, using plane waves.  We also maintain informa-

tion about polarization throughout the simulation, consider coherence effects in the source, and include aberrations. We 

thus avoid some of the errors that might be made by assuming a simple scalar point-spread function for the optical re-

sponse. While the method described is a forward calculation of the image, a library of images as a function of the sample 

and measurement parameters can be developed and used in a manner similar to that often used in grating scatterometry. 

2. THEORY 

In this section, we describe the method we use to calculate an image in a microscope.  In Subsec. 2.1, we briefly de-

scribe two methods that we use to calculate the scattering properties of a structure.  These methods, being solutions to 

Maxwell’s equations, are inherently wave-like in their descriptions, and it would be inappropriate to use a ray optic ap-

proach to propagating light in the microscope.  Thus, we are left attempting to describe propagation from the light source 

through the illumination system, scattering from the sample, and propagation to the imaging detector using an entirely 

plane-wave approach.  In Subsec. 2.2, we describe sets of unit vectors that we will use as bases to describe the field vec-
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tors.  In Subsec. 2.3, we describe the propagation of a field from an object plane to an image plane in an aberration-free 

optical system.  In Subsec. 2.4, we describe the calculation of the image intensity. We then describe the illumination field 

in Subsec. 2.5, where we account for the finitely illuminated region on the sample.  Since the approach for calculating 

the image intensity in Subsec. 2.4 does not describe the effects that polarization might have on the image, we describe in 

Subsec. 2.6 an approach for calculating a Mueller matrix image, from which the image from any combination of incident 

and collection polarizations can be calculated.  Finally, in Subsec. 2.7, we discuss how we account for aberrations. 

2.1. Sample scattering 

There are a number of methods used to calculate the relationship between the incident and scattered plane waves. The 

two methods which are used here are an implementation of rigorous coupled wave analysis (RCWA) and an integral 

equation solution (IES).  The RCWA method solves Maxwell’s equations with periodic boundary conditions, and thus 

can only be applied to periodic structures.
2,3

 The IES method solves Maxwell’s equations on a finite structure on an infi-

nite substrate, making the method most useful for isolated features.
1
  However, both methods can be applied to similar 

structures, provided that a large enough period is used in RCWA or that enough repeated structures are used in IES.  The 

solution in RCWA is expressed as amplitudes for a discrete set of plane waves, while that for IES is expressed as the 

field evaluated along some line evaluated from the sum of a reflected plane wave and the integral of cylindrical waves. 

Details of the two methods are given elsewhere.
1-3

  

2.2. Polarization basis sets 

Since electromagnetic waves are transverse in nature, and since we will express all waves in terms of a plane-wave 

decomposition, it is useful to assign a set of transverse basis vectors for which we define a polarization for any wavevec-

tor k.  We can define two unit vectors ˆ ( )se k  and ˆ ( )ph k , which are perpendicular to k and have no z-component, 

 ( )2 2 2 2ˆˆ ( ) ( ) / , / ,0s p y x y x x yk k k k k k= − = − + +e k h k . (1) 

We define two more vectors, ˆ ( )pe k and ˆ ( )sh k , which are perpendicular to ˆ ( )se k  and ˆ ( )ph k  and to k , 

 ( )2 2 2 2 2 2ˆˆ ( ) ( ) / , / , /p s x z x y y z x y x yk k k k k k k k k k k= = − + − + +e k h k . (2) 

The four vectors in Eqs. (1) and (2) follow 

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ/ , / , / , / , 0, 0s p s p s s p p s p s pk k k k× = × = × = × = ⋅ = ⋅ =e e k h h k e h k e h k e e h h . (3) 

We can define the z-axis in any way that we would like.  However, for this paper, it is convenient to define the z-axis to 

be along the rotational axis of the optical system. The vectors ˆ
se  and ˆ

sh  can then be used to define the electric and mag-

netic fields, respectively, for what we call s-polarized light, while ˆ
pe  and ˆ

ph  can be used to define the electric and mag-

netic fields, respectively, for what we call p-polarized light. 

Another useful set of vectors, which are suitable for defining polarization at the source or at the detector, where light 

is propagating primarily in the z-direction, is  

 ˆ ˆˆ ˆ(1, 0,0), (0,1,0)x y y x= − = = =e h e h . (4) 

2.3. Propagation of light through the microscope 

In a semi-infinite free-space, with no sources at infinity, we can decompose any monochromatic electric field into a spec-

trum, ( )A κ , such that 

 
i( )2

( , ) d ( ) e zk z
z

⋅ += ∫ κ ρ
E ρ κ A κ , (5) 
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where the location is given by ( , )z=r ρ , ( , )x y=ρ , the wavevector is ( , )zk=k κ , ( , )x yk k=κ , and 

 
2 i

2

1
( ) d ( , 0) e

4π
− ⋅= ∫ κ ρ

A κ ρ E ρ . (6) 

The exp( i )tω−  dependence upon time is implied, where 0 0/kω ε µ= .  Since electromagnetic waves are transverse, we 

can further decompose the spectrum into two orthogonal polarization components, 

 ˆ ˆ( ) ( ) ( ) ( ) ( )s s p pA A= +A κ κ e k κ e k , (7) 

where  

 ˆ( ) ( ) ( )j jA = ⋅κ A κ e k . (8) 

The optics in a microscope redirect waves from the object plane onto the image plane and appropriately set the phase 

and amplitude of those waves. That is, the optical system provides a mapping of wavevector, { } { }: ′→g k k , and a map-

ping of the field spectrum, { } { }: ( ) ( )′ ′→f A κ A κ .  The electric field near the image plane is then given by 

 
i( )2

( , ) d ( ) e zk z
z

′ ′ ′ ′⋅ +′ ′ ′ ′ ′ ′= ∫ κ ρ
E ρ κ A κ , (9) 

where ( , )x y′ ′ ′=ρ  and z′  are coordinates near the image plane.  In an aberration-free optical system, the function g be-

tween k  and ( , ) ( )zk′ ′ ′= =k κ g k  is 

 ( )22( ) / , /M k M= − −g k κ κ  (10) 

where M is the magnification of the system.  Due to the rotational symmetry about the optical axis, s-polarized light re-

mains s-polarized and p-polarized light remains p-polarized.  Furthermore, energy contained in a plane wave leaving a 

given area at the object plane will impinge upon an area 2M  larger at the image plane, and the beam will have a cross 

sectional area 2 /z zM k k′  larger. Thus, the function ( ) ( , )′ ′ =A k f A κ  can be expressed in terms of a dyadic  

 

1/ 2
ˆ ˆ ˆ ˆ[ ( ) ( ) ( ) ( )] ( ) : / NA1

( , )
0 : / NA

s s p pz

z

kk

kM k

′ ′ + ⋅ <  
= × ′ ≥  

e k e k e k e k A κ κ
f A κ

κ
 (11) 

The matrix form of Eq. (11) for / NAk <κ  is 

 

2 2 2 2
1/ 2

2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

( )
1

( , ) ( )
( )

( ) ( ) ( )( )

y y x x z z x y y x z z x z x y

z
y x x y z z x x y y z z y z x y

x y z

x z x y y z x y x y x y

k k k k k k k k k k k k k k k k k k
k

k k k k k k k k k k k k k k k k k k
k k k k

k k k k k k k k k k k k

′ ′ ′ ′ ′ ′ ′ ′ + − + − +
   

′ ′ ′ ′ ′ ′ ′ ′= − + + − +   ′+    ′ ′ ′ ′ ′ ′− + − + + + 

f A κ

x

y

z

A

A

A

 
 
 
  

. (12) 

An equivalent discussion can be carried out with magnetic fields.  The transformation between the magnetic field spec-

tral components is the same as Eq. (12).  In the limit of large magnification, Eq. (12) reduces in lowest order of 1/M to 

 

2 2 2 2

1/ 2

2 2 2 2

2 2

( ) ( )
1

( , ) ( ) ( )
( )

0 0 0

y x z x y z x x y x

z
y x z x y z y x y y

x y

z

kk k k k k k k k k k A
k

k k k k kk k k k k k A
Mk k k k

A

 − − − +  
    ≅ − − − +    +       

f A κ  (13) 

For unit magnification and using the fact that ( ) 0⋅ =A κ k , Eq. (12) reduces to 

 

1 0 0

( , ) 0 1 0

0 0 1

x

y

z

A

A

A

−  
  = −  
  
  

f A κ  (14) 
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2.4. Intensity 

We now define 
inc

( , , )j zE ρ κ  to be the field amplitude at ρ  and z given a unit amplitude j-polarized field incident on the 

sample with wavevector incκ .   The total field near the image plane is then 

 
inctot 2 inc inc inc

s,p

( , ) d ( , , ) ( )j j

j

z z A
=

′ ′ ′ ′= ∑ ∫E ρ κ E ρ κ κ , (15) 

where 
inc inc( )jA κ  is the spectrum of the field incident upon the sample. The total intensity near the detector plane is  

 
tot tot

0( , ) [ ( , )] ( , )I z z zε ∗′ ′ ′ ′ ′ ′= ⋅ρ E ρ E ρ . (16) 

The brackets in Eq. (16) signify that an average is to be taken over fluctuations in the incident light spectrum.  If the 

sample is stationary, we can combine Eqs. (15) and (16) to get the intensity 

 
2 2 inc inc

0 1 2 1 2 1 2

, ,

( , ) d d ( , , ) ( , , ) ( ) ( )j k j k

j k s p

I z z z A Aε ∗ ∗

=

′ ′ ′ ′ ′ ′= ⋅∑ ∫ρ κ κ E ρ κ E ρ κ κ κ . (17) 

We thus need the coherence function, 
inc inc

1 2( ) ( )j kA A
∗
κ κ , for the illumination. 

2.5. Illumination 

Consider a circular aperture of diameter D, inside of which the field is random with a correlation length ξ, and out-

side of which the field is zero:  

 

2 2src 2

0src src exp( / ) : / 2 and / 2
( ) ( )

0 : / 2 or / 2

D D

D D

ξ∗
 ′ ′− − < <′⋅ = 

′≥ ≥

E ρ ρ ρ ρ
E ρ E ρ

ρ ρ
. (18) 

From Eq. (6) and letting ξ  be very small, the angular correlation function is  

 
( )

2
2 src

0 1src src
/ 2

( ) ( )
4

j k jk

D J D
A A

ξ
δ∗

′−
′ ≅

′−

E κ κ
κ κ

κ κ
 (19) 

(j, k = s,p), where 1 ( )J x  is the first-order Bessel function of the first kind, and jkδ  is the Kronecker delta. The angular 

intensity in the j-th polarization,  

 

2
2 2 src

2 0src src src
( ) lim ( ) ( )

16
j j j

D
A A A

ξ
∗

′→
′= =

κ κ

E
κ κ κ , (20) 

is uniform.  In the case of critical illumination, the illumination optics image the source onto the sample.  Using the im-

age calculations described in Subsec. 2.3 above, for small magnification, we find after some algebra that the coherence 

function at the sample is 

 
( )2

illum 2 src illum

0 1illum illum
/ 2

( ) ( )
4

j k jk

z z

DM k J D M
A A

k k

ξ
δ∗

′−
′ =

′−′

E κ κ
κ κ

κ κ
. (21) 

When illum 1DM k ≫ , Eq. (21) may be approximated in an integral by 

 

2
2 src

0illum illum
( ) ( ) ( )j k jk

z

k
A A

k

πξ
δ δ∗ ′ ′= −

E
κ κ κ κ . (22) 
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Note the factor of zk  in the denominator.  In the case of Köhler illumination, the illumination optics image the source 

onto the back focal plane, instead of the sample, and the back focal plane is uniformly illuminated.  A field stop still ex-

ists in the system to define the illumination diameter at the sample.  Eq. (20) suggests that in critical illumination the 

back focal plane is also uniformly illuminated.  Furthermore, an analysis by Born and Wolf demonstrates that the coher-

ence associated with the critical and Köhler illumination schemes are identical.  We will therefore assume that the two 

cases are the same and use Eqs. (21) or (22) to calculate images.  

For the correlation function given in Eq. (22), the intensity at the detector is 

 

( )

2 2
2 src

0 2

2
illum

,

( , , )
( , ) d

j

j s p z

k z
I z

kM

πξ ε ∗

=

′ ′
′ ′ = ∑ ∫

E E ρ κ
ρ κ . (23) 

2.6. Polarimetry 

We present another approach to the calculation of the intensity, which allows for a treatment of polarization and co-

herence in a unified manner. Let us assume that we have scattering matrices i( , )S ρ k  that relate the amplitudes of the 

field incident upon the sample to the amplitudes of the field at the image plane.  The vector ρρρρ is the position on the detec-

tor array, and ik is the incident wavevector.  We define four matrices described by the following dyadics, 

 0 1 2 3, , , i[ ]x x y y x x y y y x x y y x x y= + = − = + = −σ e e e e σ e e e e σ e e e e σ e e e e , (24) 

and an operation, which returns a four element vector whose j-th component is 

 
† †

1 2 1 2[ ( , )] j j= ⋅ ⋅Σ A A A σ A  (25) 

(j = 0, 1, 2, 3).  The four-element vector †( , )Σ A A  is the Stokes vector representation of the field amplitude A.
4
 The total 

field is given by 

 
tot 2 inc inc inc inc

( , ) d ( , ) ( )z = ⋅∫E ρ κ S ρ κ A κ . (26) 

The average net Stokes vector intensity is given by substituting Eq. (26) into Eq. (25) and averaging, 

 

inctot 2 inc † inc † inc 2 inc inc inc inc

2 inc 2 inc inc inc inc inc inc inc

( , ) d ( ) ( , ), d ( , ) ( )

d d ( ) ( , ) ( , ) ( )j

z ε

ε

 ′ ′= ⋅ ⋅
 

′ ′ ′= ⋅ ⋅ ⋅ ⋅

∫ ∫

∫

I ρ Σ κ A κ S ρ κ κ S ρ κ A κ

κ κ A κ S ρ κ σ S ρ κ A κ

. (27) 

After some algebra, using the orthogonality of the matrices in Eq. (24), and assuming the sample is stationary, Eq. (27) 

may be rewritten as 

 
tot 2 inc 2 inc † inc inc inc † inc inc inc

( , ) d d [ ( , ), ( , )] [ ( ), ( )]z ′ ′ ′= ⋅∫I ρ κ κ M S ρ κ S ρ κ Σ A κ A κ , (28) 

where the jk-th element of the matrix operator M is   

 
† inc inc † inc inc1

2
[ ( , ), ( , )] Tr[ ( , ) ( , ) ]jk j k

′ ′= ⋅ ⋅ ⋅M S ρ κ S ρ κ S ρ κ σ S ρ κ σ . (29) 

The operation in Eq. (29) can be considered a cross-Mueller matrix.  The matrix †[ , ]M S S  is the Mueller matrix repre-

sentation of the scattering matrix S.
4
   

We make a few assumptions that significantly simplify Eq. (28).  We let the illumination region be much larger than 

the area on the sample that we are analyzing, so that the coherence in the illumination can be neglected.  We also let the 

illumination and collection magnifications be large, so that the set of wavevectors leaving the source are parallel and the 

set incident upon the detector are parallel, so that we can neglect the differences between the polarization bases for the 

different propagation directions.  Lastly, we will add polarization selectors near the source and near the detector (or any-
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where in the optical path where the wavevectors are parallel) that pass a specific polarization state or allow us to measure 

the Stokes vector at the image plane.   We thus make the approximation,  

 
inc † inc inc inc inc inc

[ ( ), ( )] ( )
z

k

k
δ′ ′= −Σ A κ A κ B κ κ , (30) 

where B is a constant Stokes vector associated with the illumination. Then Eq. (28) can be written as  

 
tot 2 inc † inc inc

( , ) d [ ( , ), ( , )]
z

k
z

k
= ⋅∫I ρ κ M S ρ κ S ρ κ B . (31) 

From Eq. (31), it is apparent that we can consider the matrix 

 
2 inc † inc inc

d [ ( , ), ( , )]
z

k

k∫ κ M S ρ κ S ρ κ  (32) 

to be the effective Mueller matrix describing the image of the sample in the microscope. 

2.7. Aberrations 

In a perfect optical system, plane waves arising from the object are transferred to plane waves incident on the image 

according to Eqs. (10) and (11).  Aberrations, which express the deviations from the perfect system, are typically ex-

pressed in terms of the distortion of the nominal spherical waves arising from a point at the object and incident upon a 

point on the image plane.
5
  Because we are not expressing fields in terms of spherical waves or with rays, it not appropri-

ate to use such nomenclature.  Instead, we express aberrations in terms of how plane-waves arising from the object are 

distorted from ideal plane waves when they are incident upon the image plane.  There is certainly a relationship between 

the two representations; however, that relationship will not be discussed here.  We consider aberrations where the plane 

wave incident upon the sample has an additional phase Φ , which is a function of wavevector ′κ and position ′ρ , and 

express that phase with the expansion 

 
, , ,

cos ( ) : 0 cos : 0
( ) ( )

sin ( ) : 0 sin : 0

l m

n k

klmn l m
k l m n

l m
a

l m

θ φ θ
κ ρ

θ φ θ

  − ≥ ≥
′ ′Φ =   

− < <  
∑ , (33) 

where klmna  are coefficients for the aberrations,  

 
arctan( / )

arctan( / )

y x

y x

θ κ κ

φ ρ ρ

′ ′=

′ ′=
, (34) 

and k, l, m and n are integers with m n≤ , and l k≤ . For a rotationally-symmetric optical system, 0m =  and 0l ≥ .  

The expression for the electric field at the image plane, which without aberrations is given by Eq. (9), then becomes 

 
i( )2

( , ) d ( ) e zk z
z

′ ′ ′ ′⋅ + +Φ′ ′ ′ ′ ′ ′= ∫ κ ρ
E ρ κ A κ . (35) 

Certain coefficients map onto specific common, known aberrations.  For example, 1110a  results in a change of magnifica-

tion, 0020a  changes the focus height, 2220a creates astigmatism, and 0040a  corresponds to spherical aberration.  Other aber-

rations can be thought of as combinations of these:  distortion, 3110a , is a change of magnification proportional to 2ρ ;  

coma, 1130a , is a change of magnification proportional to 2κ ; and curvature of field, 2020a , is a change of focus propor-

tional to 2ρ .  
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3. RESULTS AND DISCUSSION 

In this section, we present specific results of calculations of images using the methods described in Sec. 2.  We first 

verify the equivalence of the RCWA and IES methods in Subsec. 3.1.  Then, in Subsec. 3.2, we demonstrate by example 

how images depend upon the illumination area.  Calculations of images as the focus height is varied are presented in 

Subsec. 3.3.  In Subsec. 3.4, results of polarized imaging are presented. Finally, some effects of spherical aberration on 

the through-focus metric are described in Subsec. 3.5.   

3.1. Comparison between sample models 

An important consideration in any metrology where a theory is used to interpret the measurement results is the accu-

racy of that theory.  While many theories are exact in their foundation, numerical problems associated with their imple-

mentation can limit their usefulness.  It is difficult to obtain an uncertainty in a numerical calculation which has such 

unknowns as discrete approximations to integrals, truncations of series or expansions, or susceptibilities to round-off 

errors.  Therefore, one would like to establish that the uncertainty in the simulation contributes an insignificant part to 

the total uncertainty.  One way to do that is to use two very different approaches and compare their predictions. 

Here, we compare results obtained from our implementations of the RCWA and IES methods.  We chose a specific 

structure to study: an isolated 1 µm wide, 0.4 µm high line of silicon on a silicon substrate.  The illumination wavelength 

was 0.546 µm, the illumination NA was 0.4, and the collection NA was 0.8.  For the RCWA simulation, the period was 

15 µm and 300 Fourier components were considered in the calculation.  This particular structure was chosen, because the   

dimensions are large enough to display significant structure in the image.   

Figure 1(bottom) shows the results of the comparison between the RCWA and IES methods for both 1M =  (electric 

field intensity only) and M = ∞ .  Since the curves lie very close to one another, the difference between them is also 

shown.  That difference is never much larger than about 1.5 % of the signal at large distances. It is not known whether 

these differences result from errors in one, the other, or both of two methods.  Another metric for comparison is the 
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FIG. 1. Results of an inter-comparison between RCWA and IES calculations for a 1 µm wide, 0.4 µm high iso-

lated silicon line on a silicon substrate.  The top frame shows the normalized electric field intensity calculated by 

IES. The bottom frame shows the difference between the RCWA and IES calculations. The magnifications were 

(solid) ∞  and (dashed) 1.   
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slope-square-weighted mean horizontal deviation between the curves, which for 1 µmx < is 1.6 nm for 1M =  and 

2.1 nm for M = ∞ . In the future, other structures will be investigated to gain further confidence in the accuracy of both 

methods.  

Figure 1(top) shows the two cases of infinite and unit magnification.  For the case of infinite magnification, the elec-

tric field intensity and magnetic field intensity are identical.  However, for the case of unit magnfication, the magnetic 

field intensity differs from the electric field intensity and is not shown.  While the differences between the magnifica-

tions are not large, their differences are much larger than those observed between the RCWA and IES methods.  Al-

though it is not proven here, an image obtained with a magnification of 10 does not differ appreciably from one obtained 

with infinite magnification, so that for a typical microscope, the infinite magnification case is appropriate.   

3.2. Effects of finite illumination 

Figure 2 shows cross sections of images, taken perpendicular to the line direction and through the origin, of two 

structures for four different illumination diameters, compared to images of a perfectly reflecting substrate.  The struc-

tures are a single 1 µm wide, 0.4 µm high silicon line on a silicon substrate in Fig. 2(a) and an infinite grating with 
0.53975 µm pitch of 0.229 µm wide, 0.230 µm high silicon lines on a silicon substrate in Fig. 2(b).  In both cases, the 

wavelength of the light is 0.546 µm, the illumination NA is 0.40, and the collection NA is 0.80.  The diameters of the 

field stops correspond, after magnification, to 1 µm, 4 µm, 7 µm, and 10 µm.  The complex index of refraction at 

0.546 µm was assumed to be 4.091+0.026i. The results are treated in the limit of infinite magnification. The images of 
the perfectly reflecting substrate are scaled to best match the data at the largest field stop diameter.  

The larger the illumination area considered, the finer the grid that is needed in incident directions.  Since the correla-

tion function for every pair of incident directions must be considered [see, e.g., Eq. (17)], these calculations are very time 

consuming.  Thus, it is impractical to perform these calculations routinely or for more realistic illumination areas (e.g., 
tens of micrometers). Instead, we would like to develop heuristic arguments by which we can feel comfortable that the 

infinite illumination condition can be assumed. 

There are a few features observed in the results shown in Fig. 2 that should be pointed out. First, for the single line 

results [Fig. 2(a)], small differences can be observed between the perfect conductor image and the image far from the 
line; however, these differences are only observed near the edge of the illumination region.  Secondly, for the single line, 

deviations of the line’s image is only apparent for the 1 µm and 4 µm illumination diameters, with little deviation ob-
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FIG. 2. Images of two structures (thick curves) as a function of illumination field stop, compared to those (thin 

dashed curves) from a perfectly reflecting substrate. The features were (a) a single 1 µm wide, 0.4 µm high silicon 

line on a silicon substrate, and (b) an infinite grating with 0.53975 µm pitch of 0.229 µm wide, 0.230 µm high sili-

con lines on a silicon substrate. The wavelength was 0.546 µm, the illumination NA is 0.40, and the collection NA 

is 0.80. The source diaphragm diameters correspond, after magnification, to 1 µm, 4 µm, 7 µm, and 10 µm.  The 

RCWA method is used for the sample calculations.  The focus position was at the top of the features. 
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served between the 7 µm and 10 µm illumination diameters.  Thirdly, for the infinite grating, there are significant devia-

tions between the images of the grating and the images of the perfect conductor, with the edges of the images of the grat-

ing being much more smeared out.  It is difficult to conclude that even for a 10 µm illumination diameter that the image 

has converged to a steady-state image at the center of the illuminated region.  The combined results, however, suggest 

that one must remain at least as far as 5 µm from the edge of an illuminated region before interpreting results using an 

infinite illumination model.  

3.3. Through-Focus Focus metric 

Researchers at NIST have been investigating the behavior of images as a function of the focus position of the micro-

scope.
6
  Modeling changes in focus is accomplished by the use of Eq. (5), where a shift in position of the sample is 

equivalent to a shift in the position by which the field is evaluated.  The character of images measured through focus is 

quantified by a focus metric, defined by 

 [ ]2
( ) d d ( , ) / dF z x I z x= ∫ ρ . (36) 

Analysis of the focus metric can be a sensitive method for characterizing critical dimensions.   Figure 3 shows a repre-

sentative image calculated as a function of focus height, with the through-focus focus metric.     

3.4. Polarization effects 

Figure 4 shows polarized images calculated for the 1 µm wide, 0.4 µm high silicon line on a silicon substrate, as a func-

tion of focus position.  The two diagonal frames correspond to like-polarized images, while the off-diagonal frames cor-

respond to cross-polarized images.  The cross-polarized images are reduced significantly in intensity compared to the 

like-polarized images, but are not zero.  All four images differ from one another.  One might expect that measuring all 

four images would yield more information about the line or grating than that which would be obtained from a single im-

age. 
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FIG. 3. Through-focus image of a 1 µm wide, 0.4 µm high silicon line on a silicon substrate.   The outline of the 

feature is shown in white and the through-focus focus metric is shown as a black curve on the left side. The feature 

is a single 1 µm wide, 0.4 µm high silicon line on a silicon substrate, illuminated with wavelength 0.546 µm and 

NA is 0.40, and the collection NA is 0.80. The RCWA method is used for the sample calculations.   
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FIG. 4. Through focus polarization images of a single line, where the vertical direction, ranging over 6 µm, represents 

the focus position, and the horizontal direction, ranging over 7 µm, represents the x direction.  The input-output polari-

zations are (upper left) xx, (upper right) yx, (lower left) xy, and (lower right) yy.   The intensity scales of the xy and yx 

polarizations are expanded by a factor of 100 from those of the xx and yy polarizations. The feature is a single 1 µm 

wide, 0.4 µm high silicon line on a silicon substrate, illuminated with wavelength 0.546 µm and NA is 0.40, and the 

collection NA is 0.80. The RCWA method is used for the sample calculations.   
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FIG. 5. Through-focus focus metric calculated with and without collection spherical aberration for two different struc-

tures, (a) a single 1 µm wide, 0.4 µm high silicon line on a silicon substrate, and (b) an infinite grating with 0.53975 

µm pitch of 0.229 µm wide, 0.230 µm high silicon lines on a silicon substrate.  The magnitudes of the spherical aber-

ration are (dashed) +1/10 wave, (solid) zero, and (dotted) –1/10 wave.  The wavelength is 0.546 µm, the illumination 

NA is 0.40, and the collection NA is 0.80. The RCWA method is used for the sample calculations.  The focus position 

is measured with respect to the top of the features. 

3.5. Aberrations 

While a complete discussion of possible aberrations and their ramifications on quantitative imaging is a topic worthy 

of a treatise, we make a few observations here.  Some aberrations, such as field curvature or tilt, shift the local z coordi-

nate over the image, but do not affect the shape of local through-focus focus metric curves.  Others, such as distortion, 

curve otherwise straight lines. Both effects can be quantitatively measured by moving or rotating the sample in the field 
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of view. However, the effects of others, such as spherical aberration, do not depend upon the field position, and extract-

ing their magnitude from some simple measurements is not as simple.    

We calculate through-focus focus metric curves for the two structures studied here, with and without spherical aber-

ration.  We chose an amount of aberration corresponding to one-tenth of a wave at the largest κ ′  for the collection NA 

of 0.8, which would be considered a relatively good specification for a high quality objective.  The results, shown in 

Fig. 5, suggest that spherical aberration can have an adverse affect upon the shape of the curves.  For the dense array of 

lines shown in Fig. 5(b), the aberration primarily shifts the curves and only changes their shape by a small amount.  

However, for the isolated line shown in Fig. 5(a), a much larger change in the curve is observed.  A quantitative meas-

urement of spherical aberration would clearly be required in order to extract information from real images.  

4. FUTURE WORK 

This work lays a foundation for predicting and modeling optical microscope images used in critical dimension and 

overlay metrology of semiconductor devices.  Due to the lack of space, the number of examples that were given, and the 

extent to which information can be gleaned by these calculations, were limited.  However, it is expected that a number of 

results will be presented in the near future: 

• sensitivity of images and through-focus focus metric on critical dimensions of semiconductor lines; 

• more complex illumination conditions, including those obtained from quantitative analysis of a real system; 

• more complex polarization configurations, such as radial polarization or polarization-dependent illumination; 

• further work on characterizing aberrations, including handling those on illumination; and 

• comparisons between theory and experimental results. 
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