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The effects of non-Lambertian scattering of the interior wall of an integrating sphere are examined
through a sphere simulation model. The model employs Monte Carlo techniques. A sphere used for
measurement of directional–hemispherical reflectance is modeled. The simulation allows sphere wall
scattering to vary from perfectly Lambertian to perfectly specular in steps. The results demonstrate
that significant measurement error can result as the scattering deviates from the Lambertian
ideal. The error is found to be a strong function of the wall reflectance value as well: it is minimized
for reflectances approaching 1.0 and increases as the reflectance value decreases to the minimum value
examined of 0.5. The magnitudes of the errors associated with non-Lambertian scattering are also
shown to be relatively independent of the specific field of view of the detector used in the measurement.
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1. Introduction

The integrating sphere is a versatile optical device
with many uses that include averaging of optical
radiation for detection, attenuation of high power
levels for detection, creation of a uniform Lamber-
tian source, and measurement of the optical proper-
ties of diffusely scattering materials. Successful
use of an integrating sphere as an optical device
generally requires that its interior surface scatters
light in a perfectly Lambertian fashion over the
wavelength region of interest. If the interior sur-
face scatters radiation in a non-Lambertian fashion,
then the basic assumptions for the standard integrat-
ing sphere analysis are violated and the resulting
equations may lose their validity.
For use in the infrared 1IR2 spectral region 12–20

µm2, integrating spheres typically employ a diffuse
gold coating, which is a surface scatterer. Gindele
and Köhl examined the scattering characteristics of
such a sphere in 1987 and discovered a strong
tendency toward specular scattering at longer wave-
lengths.1 They measured a specularity factor that
corresponds to the fraction of light scattered in the
specular direction for near-normal incidence, increas-
ing from the ideal value corresponding to diffuse
scattering at 2 µm to ,50% at 20 µm. Under such
circumstances, the sphere behaves in an unconven-
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tional fashion. IR integrating spheres are neverthe-
less used, and measurement results are based on
equations assuming ideal coating behavior.2
Hence, important questions that need to be an-

swered are: is the assumption of the applicability
of the ideal integrating sphere equations a valid one,
and what size potential error 1and hence uncertainty
in the measurement2 could one anticipate? What
are the circumstances, if any, under which the
uncertainties are acceptably small, and do the ideal
equations produce reasonable results?
Although extensive analysis and a large number of

papers describe many details and effects of integrat-
ing sphere designs on measurement performance,
analytical solutions almost always assume ideal
Lambertian scattering.3–7 The situation of noni-
deal sphere coating behavior is a difficult one to
tackle analytically in any general way.8 Thus we
take a different approach. The scattering and ab-
sorption of light in the sphere are handled in aMonte
Carlo statistical fashion. The sphere behavior is
simulated through ray tracing of a large number of
individual rays. To simulate a sample measure-
ment, the program simply keeps track of the number
of rays absorbed at the detector port. Preliminary
results of the sphere wall specularity study were
presented at the 1992 Council for Optical and Radia-
tion Measurement annual meeting.9
In the following sections the effects of sphere wall

specularity are examined. In Section 2 details of
the simulation model, how the Monte Carlo tech-
nique is applied, and the important assumptions are
presented. The model used to describe sphere wall



scattering within the simulation program is de-
scribed in Section 3. Results from examinations of
the integrating sphere throughput and reflectance
measurement are presented in Subsection 4.A.
Simulation results of the irradiance distribution
within the integrating sphere are discussed in Sub-
section 4.B. The effects of wall reflectance and the
detector field of view on sphere measurements are
examined in Subsections 4.C and 4.D, respectively.
Finally a discussion of the implications of the results
on integrating sphere designs and the accuracy of
measurements in the infrared is presented in Sec-
tion 5.

2. Integrating Sphere Simulation Model

To analyze the performance of an integrating sphere
through a simulation program, we set up an integrat-
ing sphere with appropriate ports and trace indi-
vidual rays until they are absorbed. Through the
accumulation of data from a large number of rays,
sufficiently low uncertainty can be achieved to ob-
tain meaningful results.
The integrating sphere geometry used in the simu-

lation was chosen as representative of a typical
sphere designed with a high degree of symmetry for
optimum accuracy.10 The geometry is shown in Fig.
1. Sample and reference ports are positioned sym-
metrically with respect to an entrance port as well as
to the detector port. There are no baffles and the
sample and reference are assumed to be curved to
match the shape of the sphere wall. Since all the
surfaces that interact with the rays lie on a single
spherical surface, only two surface coordinates and
two direction angles are required to trace rays in the
sphere. Consequently the analyses and results de-
scribed in the following sections apply to any diam-
eter sphere, with port diameters scaled accordingly.
Specifically, the diameter of all the ports 1in radians2
is p@18; this corresponds to a 2.5-cm port diameter
for a 15-cm sphere diameter. For Fig. 8, the detec-
tor diameter is p@9.
In the simulation, individual rays are sent into the

sphere by way of the entrance port and followed until
they are absorbed or lost from the sphere. One can
simulate a collimated beam by randomly selecting
the ray’s input position within a beam radius 1p@722

Fig. 1. Typical integrating sphere geometry used in the simula-
tion analyses. The centers of the entrance, sample, and refer-
ence ports lie in a great circle, whereas the normal to the detector
port passes through the center of that great circle.
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of the entrance port center. The ray is traced across
the sphere to its intersection with a port or the
sphere wall. At this point, absorption may take
place 1if a randomly selected number between 0 and 1
is greater than the wall reflectivity2. If the ray is
absorbed, it is cataloged and a new ray trace is begun
from the entrance port. If the ray is not absorbed, a
scattering direction is randomly selected from the
probability distribution matched to the sphere wall
scattering properties. The ray is again traced across
the sphere to the next intersection point. The proce-
dure is repeated until absorption takes place. Then
new rays are traced in the same manner until the
requisite total number of rays is attained.
To simulate a directional hemispherical reflec-

tance measurement, we first direct the input beam
onto the sample, and the rays absorbed at the
detector are recorded. Then the reference is irradi-
ated and the rays absorbed at the detector are again
recorded. The ratio of these two measurements is
the measured reflectance. Use of these two terms
in Section 4 refers specifically to simulation results.
The 2s uncertainty for each is approximately given
by 2@ŒN, where N is the number of rays absorbed at
the detector.
The simulation program assumes, as stated above,

that all the surfaces are curved to match the sphere
wall. Polarization effects are not considered and all
the surfaces are assumed to be spatially uniform.
The simulation program is written in FORTRAN 77.

Versions of the program were run on both Cray
Research Y-MP and Macintosh IIfx computers.11
Most of the results described in this paper were
generated using the latter computer. Comparisons
of results from both computers showed agreement.
The number of rays used in the simulation runs
ranged from 50,000 to 1,000,000.

3. Sphere Wall Scattering Model

Incorporation of nondiffuse sphere wall scattering is
implemented through a simple model in which ideal
diffuse scattering is linearly mixed with ideal specu-
lar scattering. The specific mixture is denoted as
the specularity factor s, defined as the ratio of the
energy in the specular component divided by the
total energy. Such a simple model can be expected
to emulate qualitatively the effects of a range of
nondiffuse scattering profiles. In analogous studies
of the effects of diffuse and specular coatings on
blackbody cavities, a similar model was used.12,13
A schematic of the scattering model is shown in

Fig. 2. Illustrations of four cases with specularity
factors of 0 1perfectly diffuse2, 0.5, 0.75, and 1.0
1perfectly specular2 are shown.

4. Simulation Results

Now we examine the effects of the specularity on the
behavior of an integrating sphere used for reflec-
tance measurements. Specific values of param-
eters are used in the simulation runs; these are
selected to represent values associated with typical
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integrating spheres. Even though the simulation
results will vary quantitatively depending on the
specific parameter values that are selected, the
important qualitative aspects of the results should
not vary significantly. The directional–hemispheri-
cal 1diffuse2 reflectance of the sphere sections are
selected, unless otherwise noted, as follows: 0.95
for the sphere wall 1typical for infrared diffuse gold2,
0.5 for the sample, 0.0 for the detector, and 0.95 for
the reference 11.0 in Figs. 3–72. The sphere wall and
reference angular scattering character are assumed
to be identical and are characterized by the specular-
ity factor as described in Fig. 2.
The sample scattering is chosen to be perfectly

Lambertian 1diffuse2 in order to extract possible
measurement error information. If the sample and
reference have identical scattering character, there
will be no measurement error 1at least for a properly
designed sphere2. However, a difference in scatter-
ing character between the sample and reference will
lead to measurement error for spheres with nonideal
characteristics.10

A. Sphere Throughput and Reflectance Measurement

To examine a simulated reflectance measurement
under the conditions described above, simulation
runs were performed for the input beam incident on
the sample and reference. The resulting fractions
of incident light on the sample and reference, which
are absorbed by the detector, are referred to as the
sample throughput and reference throughput, respec-
tively. The results of a series of sample and refer-
ence throughput measurements are shown in Fig. 3
as a function of sphere wall specularity. For an
ideal sphere, the throughputs should be in the ratio

Fig. 2. Diagrams showing scattering distributions from the
sphere wall coating used in the simulation program. The distri-
butions are a combination of perfectly specular and perfectly
diffuse components. The specularity factor, defined as the ratio
of the flux contained in the specularly reflected beam to that of the
input beam, is fixed for a particular analysis. Each sketch
represents a particular combination of specular and diffuse
scattering for the coating.
of 2:1 1reference reflectance:sample reflectance2 for a
specularity factor of 0. The sample throughput axis
is shown with a scale corresponding to half of the
reference throughput, because the sample reflec-
tance is half of the reference reflectance. Both
curves fall off as the specularity factor s increases,
but the reference throughput falls off faster. This is
because the light reflecting off a specular reference
and sphere wall will remain in the plane of incidence
and stay away from the detector. Thus, if one finds
an integrating sphere with a similar geometry, which
has an anomalously low throughput, a partially
specular coating may be the cause.
Even for a perfectly specular case 1s 5 12, the

reference throughput is nonzero because some of the
rays eventually hit the diffuse sample and scatter
out of the plane of incidence. Because of the statis-
tical variations associated with the finite number of
rays traced, some irregular structure in the curves
appears in Fig. 3 as well as in later figures. One can
reduce this structure by increasing the total number
of rays traced, but the computation time would also
have to be increased.
The sample reflectance can be obtained through a

ratio of the sample and reference throughput mea-
surements. This ratio is normally equal to the ratio
of the sample and reference reflectances according to
standard sphere theory. Because the reference re-
flectance is selected to be 1.0, the ratio should equal
the sample reflectance 10.52. The results of ratioing
the curves from Fig. 3 are shown in Fig. 4. The
measured reflectance of the sample is plotted as a
function of the specularity factor. For s 5 0.0, the
measured reflectance is close to 0.5. But, as the
specularity factor is increased, the measured reflec-
tance increases gradually at first and then more
dramatically. Clearly, this indicates that a sphere
with a specularity factor .0.5 cannot be used with
confidence.

B. Irradiance Distribution within a Sphere

Given a specific specularity factor, is there a differ-
ent sphere geometry for which the measurement

Fig. 3. Plot of integrating sphere throughput 1relative fraction of
input flux falling on the detector port2 versus specularity factor for
sample and reference measurements showing steeper falloff of the
throughput with specularity for the reference than for the sample.



errors are reduced? To answer this question we
need to examine the irradiance distribution over the
sphere wall interior. This can be done in the simu-
lation by simply counting reflections within small
sphere area elements and dividing by the area of
each element.
The coordinate systems used for the irradiance

distribution plots are shown in Figs. 5 and 6. The
sphere is shown with its ports and coordinate system
of two angles u and f, which define any point 1u, f2 on
its surface. u ranges from 0 to p, and f from 0 to 2p.
For the purpose of displaying the entire sphere

surface in a single plot, rectangular plots are used in
Figs. 7–9. The locations of the ports are shown in
Fig. 6. Note that f 5 2p corresponds to f 5 0, so
that the sample and reference ports are split be-
tween the right and left sides of the plot, yet are
connected at f 5 0 and 2p.
The irradiance as well as the absorbed radiation is

monitored in the simulation over a 90 3 90 grid 1of
2° 3 4° elements2. The grid elements vary in area
from a maximum size at u 5 90° to a minimum size
at u 5 0° and u 5 180°. For the ideal perfectly
Lambertian 10 specularity factor2 case, we expect the
irradiance to be uniform over the sphere wall except
for the input beam spot, and we expect the absorbed

Fig. 4. Simulated measured reflectance value versus specularity
factor. The sample reflectance value used in the simulation is
0.5. The error bars represent 3s for each data point.

Fig. 5. Definition of the coordinate system used for the descrip-
tion of the simulation results: u and f are standard spherical
coordinates that define the position of any point on the sphere
surface.
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light density to be uniform over the sphere wall
except for the port areas.
The absorbed light density and the irradiance are

plotted in Figs. 71a2 and 71b2, respectively, for the s5 0
specularity case. The input beam spot has been
subtracted from Fig. 71b2 revealing the irradiance
uniformity over the sphere wall. To the right of
plots 1a2 and 1b2 scales in arbitrary units show the
correspondence between the color level and absorbed
density and irradiance, respectively. These plots
show noise near the top and bottom. This is the
result of the small area and the correspondingly
small number of rays incident and absorbed on these
grid elements. When the data shown in Figs. 71a2
and 71b2 are smoothed by averaging over three grid
elements in both the u and f directions, the results
are as shown in Figs. 71c2 and 71d2, respectively. The
smoothed data show the uniformity of the irradiance
3Fig. 71d24 over the entire sphere wall, and the ab-
sorbed density 3Fig. 71c24 over the sphere wall except
for the ports. In this case only, the detector port is
twice the diameter of the other ports.
Now let us examine the effects of sphere wall

specularity as described in Fig. 2. The irradiance
distribution is shown in Fig. 8. A pair of plots is
shown for each selection of sphere wall specularity
factor s. The upper set of plots represents the
results for input beam incidence on the sample,
whereas the lower set of plots represents input beam
incidence on the reference. The color scale is in
arbitrary units. However, all the plots in Figs. 8
and 9 are on the same relative scale: values are
consistent for all the plots. To facilitate compari-
son, the range of the color scale for the sample
incidence plots relative to the reference incidence
plots was compressed by a factor of 2 to compensate
for the lower reflectance of the sample. In addition,
all the plots have been normalized by the number of
rays used in each simulation.
For s 5 0, the only difference between the sample

and reference cases is the greater irradiance values
associated with the input beam spots located at
1u, f2 5 1100°, 0°2 and 180°, 0°2, respectively. For ref-
erence incidence, as s increases, greater irradiance
appears where the series of specular reflections off
the reference and sphere wall occur. The increases
in irradiance take place in and near the plane of

Fig. 6. Two-dimensional map of the sphere surface with coordi-
nate system 1theta 3u4, phi 3f42, as defined in Fig. 5, and location of
the ports indicated.



Fig. 7. 1a2Absorbed light and 1b2 irradiance distribution for the ideal zero specularity case. Plots 1c2 and 1d2 are the same data as 1a2 and
1b2, respectively, smoothed by averaging over three grid elements in both the u and f directions. Note the statistical noise that results in
deviations from a perfectly uniform irradiance distribution.
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incidence 1f 5 0, p, and 2p2whereas the decreases in
irradiance take place away from the plane as s
increases from 0 through 1. For sample incidence,
as s increases, greater irradiance appears directly
opposite the sample on the sphere wall.
Note that the most uniform regions of the sphere

surface for all the values of s are centered at 1u, f2 5
1p@2, p@22 and 1p@2, 3p@22; this is where the detector
and its field of view, respectively, are centered. The
detector signal is proportional to the intensity at the
1p@2, p@22 location. As s increases the irradiance at
this location decreases for both sample and reference
incidence, but decreasesmore for reference incidence.
Hence, the measured reflectance, which is the ratio
of the sample and reference irradiances, increases
with s, just as is shown in Fig. 4.
For some sphere wall scattering profiles that differ

from the model assumed in this paper, it is easy to
predict the results qualitatively by examining the
results shown in Fig. 8. For example, for scattering
that exhibits a lobe around the specular direction,
one would expect the specular reflection spots in the
irradiance plots as in Fig. 8 to be larger and weaker,
with somewhat greater irradiance values at the
detector location. Nevertheless, one would still ex-
pect the general results of Subsections 4.A–4.C:
that the measured sample reflectance values would
be greater than the true reflectance.
C. Effects of Wall Reflectance Value

An important variable that affects the performance
of all integrating spheres is sphere wall reflectance.
In general, the lower the sphere wall reflectance, the
greater the potential measurement error that is due
to any deviation from ideal behavior. The results
previously discussed were derived for a sphere wall
reflectance value of 0.95. How does the irradiance
distribution change for differing wall reflectance
values? A comparison of irradiance distributions
for sample and reference incidence is shown in Fig. 9
for wall reflectance values of 0.5 and 0.975. The
specularity factor for both sets of plots is 0.5. In
both sample and reference incidence plots, for greater
wall reflectance 10.9752 the irradiance distribution is
more uniform than for the comparable plots in Fig. 8,
whereas for the 0.5 case, the uniformity of the
irradiance distribution is significantly worse than
the Fig. 8 plots.
As in Fig. 4, measured reflectance values are

plotted in Fig. 10. Using the data from a series of
irradiance distribution simulation runs, reflectance
measurements were simulated for sphere wall reflec-
tance values ranging from 0.5 to 0.975. The sample
reflectance values were obtained by ratioing the
smoothed irradiance values at the detector position
for sample incidence to the values for reference
incidence andmultiplying the result by the reference



Fig. 8. Irradiance distribution for 1a2 sample incidence and 1b2 reference incidence for specularity factors ranging from 0.0 to 0.9375.
Note the imaging of the input spot in 1a2 of the diffuse sample, on the opposite side of the sphere. Note changes in the distribution,
increasing irradiance in the plane of incidence and decreasing irradiance out of this plane. Also note in 1b2, the increasing intensity
corresponding to the specular component reflections off the sphere wall.
reflectance 1also equal to the wall reflectance2. Each
data point in Fig. 10 represents a measured sample
reflectance for a specific specularity factor and
wall reflectance value. For high values of sphere
wall reflectance, the error in the measured reflec-
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tance is small 1,0.022 even for specularity factor
values as high as 0.5; only for nearly complete
specularity does the error become large. For lower
values of sphere wall reflectance, on the other hand,
the error in themeasured reflectance becomes signifi-



Fig. 9. Irradiance distribution comparison for two wall reflectance values with the same specularity factor of 0.5. The plots to the left
31a2 and 1b24 are for wall reflectance of 0.5, and the plots to the right 31c2 and 1d24 are for a wall reflectance of 0.975. Upper 31a2 and 1c24 and lower
31b2 and 1d24 plots are for sample and reference incidence, respectively.
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cant for progressively lower specularity factor values.
There is some crossover of the curves, where the
statistical variations are of the order of the differ-
ences between the curves.

D. Interaction with Detector Field of View

The detector field of view often comes into play in the
error analysis of integrating spheres. Almost every
detector will have some effective limitation to its

Fig. 10. Measured reflectance versus specularity factor. Each
curve corresponds to a different wall reflectance value ranging
from 0.5 to 1.0, with the specific values shown in the legend inset.
field of view, either directly through apertures and
baffling or indirectly through a falloff in sensitivity
as a function of incidence angle. This is especially
true in the infrared spectral region for which detec-
tors that operate at cryogenic temperatures are
required.14,15 Since the irradiance distribution over
the sphere wall is not uniform and since a restricted
detector field of view samples an asymmetrically
irradiated portion of the sphere, an examination of
the directional distribution of light irradiating the
detector is warranted. Perhaps an enlightened
choice of detector field of view might reduce the
measurement errors associated with a hemispheri-
cal field of view 1assumed in Subsections 4.A. and
4.C.2.
A series of simulation runs was performed, for

which the absorbed rays at the detector were grouped
and counted according to their incident angles on the
detector. The results for sphere wall reflectance of
0.95 and specularity factor of 0.75 are shown in Figs.
11 and 12. Both incident 1U2 and azimuthal 1F2
angles with respect to the detector normal were
examined.
The results shown in Fig. 11 indicate that, even for

a high degree of specularity, the incident angular
distribution of light on the detector is close to the
ideal case 3combination of Lambertian illumination
sin12U2 and a hot spot4 obtained for 0 specularity



factor. Even for the s5 0 case, a hot spot correspond-
ing to the initial reflection off the sphere wall can be
seen by the detector. In many sphere designs this is
removed from the detector field of view by a baffle or
other field-of-view limitation. The deviation from
sin12U2 in Fig. 11 reflects a combination of increased

Fig. 11. Number of rays absorbed at the detector versus incident
angle 1U2 on the detector. The sphere wall reflectance is 0.95 and
the specularity factor is 0.75. Curves are shown for both sample
1smaller values2 and reference incidence 1larger values2. Overlaid
with the simulation results solid curves represent the dashed
curves expected from ideal sphere behavior 1except for the hot spot
lobes2. The large structure1s2 for U 5 p@2 are theoretically
expected and arise from the more intense input beam spot on the
sphere wall.

Fig. 12. Number of rays absorbed at the detector versus azi-
muthal angle 1F2 incident on the detector. The sphere wall
reflectance is 0.95 and the specularity factor is 0.75. Curves are
shown for sample and reference incidence. The peak structures
for sample incidence arise from the input beam hot spot at F 5

100° and its associated image directly opposite at F 5 280°. For
reference incidence, the peak structures correspond to succes-
sively weaker specular reflections, back and forth across the
sphere.
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flux level from the input beam spot on the sample
and reference and a decreased flux level from the
empty entrance port and low reflectance sample.
This can be seen more clearly in Fig. 13. Although
the shapes of the curves’ two main features 1Lamber-
tian component and hot spot2 are the same as would
be obtained for an ideal sphere wall, the relative flux
levels of these two components are appreciably differ-
ent for the high degree of specularity case shown in
Fig. 11. The greater the specularity factor, the
greater the flux contribution from the hot spot and
the smaller the contribution from the Lambertian
component. In addition, as discussed below, the hot
spot component in Fig. 11 is distributed throughout
the entire azimuthal angular range, so that it no
longer can be considered a spot and be blocked by a
baffle.
An examination of the azimuthal angular distribu-

tion of incident light on the detector is shown in Fig.
12. Note that the entrance port is located at F 5
270°, the sample port at 100°, and the reference port
at 80°. For sample incidence the distribution can be
divided into roughly three components: one from
the hot spot on the sample where the input beam is
incident, a second from the image of the hot spot on
the opposite side of the sphere at F 5 270°, and a
third uniform component corresponding to Lamber-
tian illumination. From Fig. 12 it can be seen that,
for sample incidence, the peak atU 5 45° seen in Fig.
11 is made up of flux from both the hot spot and its
image. For reference incidence, the curve in Fig. 12
evidences the specularity of the reference and sphere
wall through a series of washed out peaks decreasing
in intensity and corresponding to the series of specu-
lar reflections within the sphere. In Fig. 12, the
peaks are located at F 5 180°, 250°, 60°, 230°, 40°,

Fig. 13. Measured reflectance value as a function of incident
angle of light onto the detector. The reflectance value does not
vary from the average, except in the region of the hot ring.
Hence the detector FOV should not affect the error that is due to
the specularity: if the FOV includes the hot ring region, the
systemmay bemore susceptible to other errors and imperfections.
Hence, in general it would be advisable to shield the hot ring from
the detector.
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210°, 20°, 190°, etc.2. Hence, the termhot ringmight
be more appropriate than hot spot. A residual
Lambertian illumination can be discerned from this
reference incidence curve as with the sample inci-
dence curve. A minimum corresponding to the en-
trance port can be seen at 270°.
To gauge the effect of restricting the detector field

of view on the reflectance measurement, we divided
the two curves shown in Fig. 11 to obtain the
reflectance versus incident angle plot shown in Fig.
13. The curve represents the reflectance that would
be measured by the detector for light incident only at
an angle U on the detector. Each incident angle
defines a thin walled cone of light. Additional lines
in Fig. 13 indicate the correct sample reflectance
1solid2 and the averagemeasured reflectance 1dashed2.
The width 15°2 of the peak at 45° corresponds to the
input beam spot diameter at the sample and refer-
ence, whereas the dips on either side of the peak
correspond to the entrance and sample port diam-
eters 110°2. Because the number of detected rays
falls to zero close to U 5 0° and 90°, the uncertainty
increases correspondingly 1,1@ŒN2 at these two ex-
tremes.
Except for the region around the hot spot, the error

bars overlap the average measured value for every
incident angle. Note that the average value of
0.565 differs slightly from the ,0.58 value in Fig. 10.
These values were obtained in separate runs and
reflect the expected statistical variations. For any
specific detector field of view 1FOV2, the resulting
reflectance would be the normalized integral of the
measured reflectance over incident angles 1U2 from 0°
to the FOV half-angle, weighted by cos1U2. From
the results shown in Fig. 13, this value would be
roughly constant and equal to the hemispherical
FOV case.
Therefore, apparently the detector FOV does not

play a significant role in its interaction with the
sphere wall specularity source of error. That is,
neither does a reduced or restricted FOV increase
the size of the error substantially, nor can it be
adjusted to decrease somehow the error size signifi-
cantly. This is not to say that a restricted detector
FOV cannot contribute to large measurement errors
through interaction with other sources of error, as
has been shown 1see Refs. 2 and 92. Limiting the
detector FOV to remove the hot ring component
around 1U, F2 5 145°, 0° to 360°2would be advisable to
reduce the variability of irradiance with sample
scattering distribution from this region. Note that
simple baffles between the sample and reference and
the detector are insufficient in the case of a nonzero
specular component.

5. Summary and Conclusions

A numerical calculation approach employing Monte
Carlo methods has been used to analyze the effects of
non-Lambertian scattering from the interior wall of
an integrating sphere. In particular, an analysis is
made of the wall’s scattering properties effects on
diffuse reflectance measurements. Both the specu-
larity and the magnitude of the wall reflectance are
found to affect the accuracy of such measurements
significantly. The effects of a limited detector field
of view have been examined. The errors associated
with a nonzero wall specularity factor are seen to be
fairly independent of the detector field of view,
except for the region corresponding to the hot ring,
where the incident light in the sphere is concen-
trated by the focusing properties of the partially
specular spherical mirror.
The importance of the diffuse character of sphere

wall scattering has been affirmed and it has been
shown that the errors associated with deviations
from the ideal need to be taken into account, espe-
cially in the case of high accuracy measurements.
High sphere wall reflectance has been shown to

have the benefit 1in addition to greater throughput
and hence an improved signal-to-noise ratio2 of reduc-
ing the errors associated with nonideal wall scatter-
ing. The wavelength dependence of both a sphere’s
wall reflectance and its scattering character will
result in a wavelength dependence of the errors that
are due to non-Lambertian scattering.
As is the case with other sources of error, the lower

reflectance values of integrating sphere coatings in
the IR comparedwith the visible significantly worsen
the potential measurement error that is due to
non-Lambertian coating behavior. The size of the
error as a function of wavelength depends on the net
result of two counteracting effects: the increased
specular character of sphere wall scattering with
increased wavelength, and the increased reflectance
with wavelength.
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1. K. Gindele and M. Köhl, ‘‘Strengths and weaknesses of

IR-active integrating spheres,’’ Sol. Energy Mater. 16, 167–
172 119872.

2. R. R. Willey, ‘‘Results of a round robin measurement of
spectral emittance in the mid-infrared,’’ in Passive Infrared
Systems and Technology, H. M. Lamberton, ed., Proc. SPIE
807, 140–147 119872.

3. A. H. Taylor, ‘‘The measurement of diffuse reflection factors
and a new absolute reflectometer,’’ J. Opt. Soc. Am. 4, 9–23
119202.

4. A. H. Taylor, ‘‘Errors in reflectometry,’’ J. Opt. Soc. Am. 25,
51–56 119352.

5. J. A. Jacquez and H. F. Kuppenheim, ‘‘Theory of the integrat-
ing sphere,’’ J. Opt. Soc. Am. 45, 460–470 119552.

6. F. J. J. Clarke and J. A. Compton, ‘‘Correction methods for
integrating sphere measurement of hemispherical reflec-
tance,’’ Color Res. Appl. 11, 253–262 1Winter 19862.

7. H. L. Tardy, ‘‘flat-sample and limited-field effects in integrat-
ing sphere measurements,’’ J. Opt. Soc. Am. A 5, 241–245
119882.

8. H. L. Tardy, ‘‘Matrix method for integrating-sphere calcula-
tions,’’ J. Opt. Soc. Am.A 8, 1411–1418 119912.

9. L. M. Hanssen, ‘‘Effects of non-Lambertian surfaces on inte-
grating sphere measurements,’’ presented at the Council for
Optical and Radiation Measurement 1992 Annual Meeting,



New Carrolton, Md., 19–20 May 1992, Program and Book of
Abstracts, p. 8.

10. K. A. Snail and L. M. Hanssen, ‘‘Integrating sphere designs
with isotropic throughput,’’Appl. Opt. 28, 1793–1799 119892.

11. The mention of manufacturers and model names is intended
solely for the purpose of technical information useful to the
reader and in no way should be construed as an endorsement
of the named manufacturer or product.

12. A. Ono, ‘‘Calculation of the directional emissivities of cavities
by the Monte Carlo Method,’’ J. Opt. Soc. Am. 70, 547–554
119802.
3606 APPLIED OPTICS @ Vol. 35, No. 19 @ 1 July 1996
13. V. I. Sapritsky and A. V. Prokhorov, ‘‘Calculation of the
effective emissivities of specular-diffuse cavities by theMonte
Carlo Method,’’Metrologia 29, 9–14 119922.

14. L. M. Hanssen and K.A. Snail, ‘‘Infrared diffuse reflectometer
for spectral, angular, and temperature resolved measure-
ments,’’ in Passive Infrared Systems and Technology, H. M.
Lamberton, ed., Proc. SPIE 807, 148–159 119872.

15. L. M. Hanssen, ‘‘Effects of restricting the detector field of view
when using integrating spheres,’’ Appl. Opt. 28, 2097–2103
119892.








