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I. INTRODUCTION

This report gives a detailed account of the 2018 least-squares
adjustment of over 300 recommended values of basic funda-
mental constants in nature based on the latest relevant precision
measurements and improvements of theoretical calculations.
The work has been carried out under the auspices of the Task
Group on Fundamental Constants (TGFC) of the Committee
on Data of the International Science Council (CODATA).
The cutoff date for accepted data was at the close of
31 December 2018, and the new set of values became available
on World Metrology Day, 20 May 2019, at http://physics.nist
.gov/constants, a website of the Fundamental Constants Data
Center of the National Institute of Standards and Technology
(NIST), Gaithersburg, Maryland, USA.
The compilation of values of fundamental constants argu-

ably started with Birge (1929) and afterwards occurred at
irregular intervals until 1998. Since that year, updated and
improved adjustments have been published every four years
(Mohr and Taylor, 2000, 2005; Mohr, Taylor, and Newell,
2008a, 2008b, 2012a, 2012b; Mohr, Newell, and Taylor,
2016a, 2016b). In 2017, a special adjustment was done to
provide values for the redefinition of the International System
of Units (SI) (Mohr et al., 2018; Newell et al., 2018).
Specifically, recommended exact numerical values for the
Planck constant h, elementary charge e, Boltzmann constant
k, and Avogadro constant NA were provided. See Mills et al.
(2011) for a review of the proposals that led to the redefi-
nitions. The revised SI units for time, length, mass, current,
temperature, amount of substance, and luminous intensity
based on these exact values together with the already exactly
defined frequency of the ground-state cesium hyperfine split-
ting and speed of light in vacuum c officially became effective
onWorld Metrology Day. Table I lists the values of the defining
constants including that of the luminous efficacy, a measure of
light intensity as observed by the human eye. The revision has
played an important role in the 2018 least-squares adjustment.
The four newly fixed defining constants h, e, k, and NA

within the revised SI replace four constants that previously
helped define the SI. These were the mass of the international
prototype of the kilogram (IPK) mðKÞ, the permeability of
vacuum (magnetic constant) μ0, the temperature at the triple
point of water TTPW, and the molar mass of a carbon 12 atom at
rest and in its ground state,Mð12CÞ. In the revised SI, thesemust
now be determined experimentally and are no longer funda-
mental (Mohr et al., 2018; Newell et al., 2018). For example,
the permeability of vacuumand themolarmass of carbon 12 are
calculable from other (inexact) recommended values; specifi-
cally, these are the measurable fine-structure constant and the
mass of a single carbon 12 atom, respectively. In this adjust-
ment, we find μ0 ¼ 4π × 10−7½1þ 55ð15Þ × 10−11� NA−2

and Mð12CÞ ¼ 0.012 × ½1 − 35ð30Þ × 10−11� kgmol−1.
The quantities TTPW and mðKÞ cannot be determined from

other fundamental constants. Of course, the triple point of
water can still be regarded “fundamental” in that this point has
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a well described definition that can be realized by any
interested party. To date, however, no theoretical model can
reach the accuracy of the best experimental determinations
and, thus, TTPW is no longer relevant for the adjustment. The
prototype of the kilogram is also no longer relevant for
the adjustment, but for a different reason. In this case, the
prototype is no longer fundamental. That is, it is no longer
unique among massive objects. For further information see the
Mise en pratique for the definition of the kelvin and kilogram
in the online version of the SI brochure found at https://www
.bipm.org/en/publications/si-brochure.
The cornerstone of this 2018 CODATA adjustment, as in

previous adjustments, is the validity of physical theory as
understood today. Prominent in these theories are the concepts
of energy and momentum. For example, the energy of a particle
of massm at rest ismc2 from special relativity. The energy of a
single photon with angular frequency ω is ℏω from quantum
electrodynamics (QED). Here, ℏ is the reduced Planck constant.
From quantum mechanics we know about the particle-wave
duality and that themomentumof amassive ormassless object is
p ¼ ℏk, where thewave vectork has a length jkj ¼ 2π=λ and λ
is the particle’s wavelength. Of course, energy and momentum
conservation then ensures, for example, that when an atom
absorbs a photon (without ionizing) its momentum changes and
its mass slightly increases. Finally, statistical mechanics and
thermodynamics tell us that the mean kinetic energy of a three-
dimensional classical gas of noninteracting atoms is 3kT=2 per
atom at temperature T.
It is worth noting that the possible time variation of the fine-

structure constant α, proton-to-electron mass ratio, and other
dimensionless constants or ratios (Safronova et al., 2018) does
not affect the 2018 adjustment. That is, our final uncertainty
for these quantities is orders of magnitude larger than current
upper bounds on their time variation.

II. PURPOSE OF THE ADJUSTMENT AND OVERVIEW OF
CONSTANTS

Our periodic CODATA evaluations of the fundamental
constants of physics and chemistry serve two purposes. First,

they provide a self-consistent set of recommended values of the
constants for all to use. Second, because they necessitate a
summary and analysis of a wide range of experimental and
theoretical data, they can identify possible inconsistencies
among the data and suggest areas for future work.
A constant is only fundamental as a matter of convention.

For our adjustment, obvious constants are those that appear in
basic physical and chemical theory, such as h, c, e, and k as
well as the Newtonian constant of gravitation G and the
dimensionless fine-structure constant α. Products and ratios of
these constants, like the Josephson constant KJ ¼ 2e=h, the
molar gas constant R ¼ NAk, and the Planck mass ðℏc=GÞ1=2,
are natural extensions. Over the years, many such products
and ratios have been given dedicated names as these combi-
nations appear as natural units for measurement observables.
Masses and magnetic moments of the lightest charged

leptons, i.e., the electron and muon, and of light nuclei also
fall within the scope of our work as their precise evaluation
often involves knowledge of the fine-structure and other
constants. Our Task Group only publishes updated values
for the neutron and nuclei with charge number Z ¼ 1 or 2. We
providemasses in the SI unit kg and as relative atomicmasses in
the atomic mass unit 1 u ¼ mu (i.e., in units of one-twelfth of
the mass of a neutral 12C atom). An extensive listing of relative
atomicmasses for stable andunstable atoms in the periodic table
can be found in the Atomic-Mass-Data-Center publications
(Huang et al., 2017; Wang et al., 2017). Particle properties
relevant for high-energy physics, such as themasses of theW,Z,
and Higgs particles, the Fermi coupling constant, decay modes
of mesons, and many other quantities are collected by the
Particle Data Group (Tanabashi et al., 2018).
We also maintain values for the lattice constant of natural

silicon single crystals and the shielded magnetic moments
of the proton in liquid-water and the helion in 3He gas. For
the adjustment, the former are relevant for the calibration of
x-rays. Before the redefinition of the SI, the precise values of
the Si lattice constants in natural and enriched silicon crystals
were used to help measure the Avogadro and Planck con-
stants. The shielding factors are relevant because often only
shielded magnetic-moment ratios are available.
For conciseness, this review summarizes results from the

four years before our 31 December 2018 closing date, as
previous CODATA reports describe older data. Detailed
discussions of theoretical calculations and experiments are
omitted and only noteworthy features are mentioned.
Often a result is identified by an abbreviation for the

institution at which it was obtained and the last two digits of
the year inwhich the result was published in an archival journal.
However, a result does not have to be published in such a
journal to be considered as having met the 31 December 2018
closing date of the adjustment if it was available by this date in a
detailed preprint. Any input datumwith a 20 or earlier date after
its institutional abbreviation has met this requirement. A
comprehensive list of Symbols and Abbreviations is given
near the end of this report.

III. LEAST-SQUARES ADJUSTMENTS

The least-squares procedure for the determination of the
values of fundamental constants is based on the assumption of a

TABLE I. Exact quantities and their mathematical symbols relevant
for the revised SI.

Quantity Symbol Value Unit

hyperf. transition
freq. of 133Cs

ΔνCs 9 192 631 770 Hz

speed of light
in vacuum

c 299 792 458 m s−1

Planck constanta h 6.626 070 15 × 10−34 J Hz−1

ℏ 1.054 571 817… × 10−34 J s
elementary charge e 1.602 176 634 × 10−19 C
Boltzmann

constant
k 1.380 649 × 10−23 J K−1

Avogadro constant NA 6.022 140 76 × 1023 mol−1

luminous efficacy Kcd 683 lmW−1

aThe energy of a photon with frequency ν expressed in
unit Hz is E ¼ hν in unit J. Unitary time evolution of the
state of this photon is given by expð−iEt=ℏÞjφi, where jφi is the
photon state at time t ¼ 0 and time is expressed in unit s.
The ratio Et=ℏ is a phase.
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normal probability distribution for correlated input data and is
described in detail inAppendixE ofMohr andTaylor (1999) and
Mohr and Taylor (2000). Key points are as follows. Experiment
as well as theory provide input data that are used to determine a
set of independent quantities, the unknowns or variables of the
adjustment. They will be called adjusted constants. The expres-
sion that relates an input datum to the adjusted constants is its
observational equation, and the one-standard-deviation uncer-
tainties of and covariances among the input data determine the
weights of the data contributing to χ2 (chi squared), which is
minimized in the least-squares adjustment.
Observational equations are given by

X ≐ FðA1; A2;…Þ; ð1Þ

where X and Fð� � �Þ are the input datum and its relationship to
adjusted constants Aj with j ¼ 1; 2…, respectively. The
symbol ≐ implies that the quantities on either side are equal
in principle but need only agree to within the constraints of the
adjustment. In its simplest form, the observational equation is
X ≐ A. We simplify to X ≐ X when no confusion can arise. A
good example of such a case is Newton’s gravitational
constant G, where experimentalists directly measure G.
One-standard-deviation uncertainties will also be called

standard uncertainties. For quantity X they are presented as
either an absolute standard uncertainty uðXÞ with the same
unit as X or a dimensionless relative standard uncertainty
urðXÞ ¼ uðXÞ=jXj. Throughout this article, covariances
uðX; YÞ between quantities X and Y are specified in terms
of correlation coefficients rðX; YÞ ¼ uðX; YÞ=½uðXÞuðYÞ�
with values between −1 and 1.
Theoretical expressions, say for the g-factor of the electron,

often have uncertainties due to inexact numerical calculations
or uncalculated terms whose size cannot be ignored. They are
dealt with by introducing an additive correction δth to the
relevant theoretical expression and including δ as an input
datum with magnitude zero and an uncertainty equal to that of
the theoretical expression. An observational equation δ ≐ δth
is then added to χ2. Corrections δth are thus adjusted constants
whose values and uncertainties are found in the least-squares
procedure. Correlations, sometimes significant, among the δ
due to common sources of uncertainty are taken into account
in χ2 where appropriate.
A measure of the consistency of our least-squares adjust-

ment for the ith input datum Xi is its normalized residual
ri ¼ ðXi − hXiiÞ=uðXiÞ, where hXii is its fitted, or adjusted,
value. An absolute value greater than two is problematic and is
reduced to less than two by the application of a multiplicative
expansion factor to the initially assigned uncertainties of the
input datum in question as well as related input data. For data
pair Xi and Xj, expansion factors are applied in such a way
that their correlation coefficient rðXi; XjÞ is unchanged. This
procedure makes the effective data consistent. Several expan-
sion factors have been used in this adjustment.
After the application of all expansion factors, we character-

ize the quality of an adjustment with N input data and M
adjusted constants by the probability pðχ2jνÞ of obtaining a
value of χ2 by chance that large or larger, where ν ¼ N −M

and the Birge ratio RB ¼
ffiffiffiffiffiffiffiffiffi
χ2=ν

p
.

For the 2018 adjustment, the input data and adjusted
constants separate into three independent data sets, corre-
sponding to input data related to the determination of the
gravitational constant, input data related to natural-silicon
lattice spacings, and, finally, all remaining input data and
adjusted constants. Each data set is treated separately. The
gravitational constant is determined from N ¼ 16 measure-
ments and an expansion factor of 3.9 is needed to decrease the
residuals to below two. This modification leads to χ2 ¼ 12.9,
pðχ2jνÞ ¼ 0.61, and RB ¼ 0.93. For the natural-silicon lat-
tice-spacing determination, there are N ¼ 21 input data and
M ¼ 12 adjusted constants. No expansion factor is needed
and χ2 ¼ 7.3, pðχ2jνÞ ¼ 0.60, and RB ¼ 0.90. The third least-
squares adjustment has N ¼ 105 andM ¼ 62 with χ2 ¼ 31.5,
pðχ2jνÞ ¼ 0.88, RB ¼ 0.87. Two expansion factors are
included. A factor of 1.6 is applied to the 62 input data
determining the Rydberg constant and proton and deuteron
charge radii. A factor 1.7 is used for the two input data that
determine the relative atomic mass of the proton.
The input data for the 2018 CODATA adjustment can be

found in Tables VIII, X, XVIII, XXI, XXVII, and XXIX.
Links to tables with correlation coefficients are given in the
captions of these tables. The adjusted constants are given in
Tables XI and XIX. Observational equations are found in
Tables XXIII and XXVI.

IV. OVERVIEW OF NOTABLE CHANGES

A. Electrical units

The introduction of the revised SI has brought electrical
metrology back into the SI. Between 1988 and 2018, on the
recommendation of the Consultative Committee for
Electricity (CCE) and adopted by the International
Committee for Weights and Measures (CIPM) (Quinn,
1989; Taylor and Witt, 1989), the electrical units of current,
voltage, resistance, etc. were the ampere-90, volt-90, ohm-90,
etc. derived by fixing the Josephson and von Klitzing
constants to the exact, conventional values KJ−90 ¼
483 597.9 GHz=V and RK−90 ¼ 25 812.807 Ω, respectively,
instead of using KJ ¼ 2e=h and RK ¼ h=e2 based on the most
accurate values for h and e. Then, for example, a measurement
of the resistance of a resistor would result in a number times
RK−90, which is then expressed in the unit Ω90 (often the
subscript 90 would be dropped) using the value of RK−90. Now
these conventional 1990 electrical units are obsolete, because
with exact values for h and e in SI units, the Josephson and
von Klitzing constants are exact. This leads to fractional
changes of two to twenty times 10−8 when reexpressing values
of electrical quantities from conventional 1990 to the revised
SI units. These changes, however, are generally much smaller
than the relative uncertainties associated with most everyday
measurements of electrical quantities and are only noticeable
when comparing quantum electrical standards.

B. Particle and relative atomic masses and the atomic
mass constant

Overnight, the revision of the SI has led to almost two
orders of magnitude improvement in the uncertainties of the
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electron, neutron, and nuclear and atomic masses in the SI unit
kg when compared to those found in the 2014 CODATA
adjustment. The atomic mass constant, one-twelfth of the
mass of the 12C atom in its ground state, has similarly become
more accurate. These masses are now often known with
relative uncertainties of a few times 10−10.
By fixing h and e, the reduced uncertainty is achieved by

combining the results of several distinct measurements with
equally accurate theoretical calculations for these measure-
ments. For example, in the revised SI the atomic mass constant
is most accurately determined through

mu ¼
1

12
mð12CÞ ¼ 1

ArðeÞ
me ¼

2hR∞

ArðeÞα2c
; ð2Þ

where the adjusted constants are the Rydberg constant R∞,
the fine-structure constant α, and the relative atomic mass of
the electron ArðeÞ. Here, we use the Rydberg energy
hcR∞ ¼ α2mec2=2, and me is the mass of the electron. The
Rydberg constant is mainly constrained by measurements of
the 1S-2S transition energy in hydrogen. (In practice, this
transition energy is measured as a two-photon process.)
The fine-structure constant is determined from a combination
of calculations and measurements of the electron g-factor as
well as atom-recoil measurements. Finally, the relative atomic
mass of the electron (not me in kg) is found from spin-
precession and cyclotron-frequency-ratio measurements on
hydrogenic 12C5þ.
Of the three adjusted constants on the right-hand side of

Eq. (2), the fine-structure constant α is by far the least well
known with a still-impressive relative standard uncertainty of
1.5 × 10−10. The relative uncertainty of ArðeÞ is 2.9 × 10−11,
while that for R∞ is 1.9 × 10−12. We find that the relative
uncertainty for mu is slightly less than twice that of α once the
small covariances among the three adjusted constants are
taken into account.
The mass for a neutral atom X is most accurately found

from

mðXÞ ¼ mX ¼ ArðXÞmu; ð3Þ

where we rely on the 2016 Atomic-Mass-Data-Center
(AMDC16) values of relative atomic masses for neutral atoms
throughout the periodic table (Huang et al., 2017; Wang et al.,
2017). These relative atomic masses often have a smaller
relative uncertainty than mu, even though the accuracy of mu
has improved significantly. The masses of nuclei can be found
by accounting for the electron masses and electron removal
energies where available.
In 2016, the Atomic Mass Data Center updated the relative

atomic mass of hydrogen based on the then-available data. In
2017, Heiße et al. (2017) made an accurate measurement of
the cyclotron frequency ratio of the proton and the 12C6þ

nucleus. The implied relative atomic masses of the proton and
hydrogen atom from these two sources are inconsistent and
require an expansion factor in our least-squares adjustment.
The uncertainties added by accounting for the electron mass
and binding energy are negligible.

C. Proton charge radius and Rydberg constant or frequency

The disagreement between the (root-mean-square) charge
radius of the proton rp obtained from Lamb-shift measure-
ments in muonic hydrogen (a muon bound to a proton) and the
value obtained from transition frequency measurements in
hydrogen and electron-proton elastic scattering data, some-
times referred to as the “proton-radius puzzle,” has been partly
resolved. Therefore, for this 2018 CODATA adjustment, the
TGFC decided that the muonic hydrogen data, some of which
were already available in 2010, as well as related muonic
deuterium data, should no longer be excluded.
The reduced disagreement in the determinations of the

proton charge radius is mainly due to two new hydrogen
spectroscopic measurements (Beyer et al., 2017; Bezginov
et al., 2019), as they imply a smaller rp closer to that found
from muonic hydrogen data. Figure 1 illustrates the improved
agreement for rp as well as its strong correlation with the
determination of the Rydberg constant R∞. We observe that
our 2018 value for rp has a three-times improved uncertainty
compared to that found in the 2014 CODATA evaluation.
Moreover, the correlation coefficient between rp and R∞ has
significantly decreased. The covariance error ellipse is more
circular in the 2018 adjustment. Similar observations hold
for the determination of the deuteron charge radius rd. Our
2018 relative standard uncertainties for rp, rd, and R∞ are
2.2 × 10−3, 3.5 × 10−4, and 1.9 × 10−12, respectively.

0 5 10 15 20
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0
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10
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 R
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01
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1

FIG. 1. Covariance error ellipses for the proton radius rp and the
Rydberg constant R∞ from the 2014 (blue marker and curve) and
the current 2018 (red marker and curve) CODATA adjustment.
The black marker and ellipses correspond to a 2018 adjustment
where the experimental data from muonic hydrogen and muonic
deuterium have not been included. Solid and dashed curves
correspond to the one- and two-standard-uncertainty ellipses,
respectively. The x- and y-axis data are shifted and normalized by
the 2018 recommended values and standard uncertainties of rp
and R∞, respectively.
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The tension between the two approaches determining rp
and rd has not been fully resolved. In fact, to obtain
consistency among the many input data that contribute to
the determination of R∞, rp, and rd, a multiplicative expansion
factor of 1.6 is applied to their uncertainties. Further experi-
ments are needed.

D. Fine-structure constant and electron magnetic-moment
anomaly

The fine-structure constant, the dimensionless coupling
constant in QED, is determined primarily by measuring either
the electron magnetic-moment anomaly ae or the recoil
momentum of an atom from emitting or absorbing a resonant
photon. To date, the two approaches lead to a roughly equal
uncertainty for α. Figure 2 summarizes these data and the 2018
recommended value of α. The relative standard uncertainty of
the 2018 recommended value of α is 1.5 × 10−10, a value that
has improved steadily over the past hundred years, since its
definition by Sommerfeld (1916).
The uncertainty of the theoretical expression for the

electron magnetic-moment anomaly ae, mainly a function
of α, has now been reduced to the point where it contributes
negligibly to the determination of the fine-structure constant α
obtained by equating the experimental value of ae to the
theoretical expression. For example, Laporta (2017) evaluated
the four-virtual photon QED coefficient virtually exactly and
hadronic corrections have been updated.
The most recent experimental value for ae has a relative

standard uncertainty of 2.4 × 10−10 (Hanneke, Fogwell, and
Gabrielse, 2008). Its derived value for α is shown in Fig. 2 as
Harvard-08.
An important new atom-recoil input datum is that by

Parker et al. (2018) measured at the University of
California at Berkeley, USA. Using atom interferometry with
laser-cooled 133Cs, the quotient h=mð133CsÞ was measured

with ur ¼ 4.0 × 10−10. It provides a value of α with
ur ¼ 2.0 × 10−10, which is the smallest uncertainty of all
relevant measurements. It agrees with the less-accurate
value of α from a 87Rb atom-interferometry measurement
(Bouchendira et al., 2011) made at the Laboratoire Kastler-
Brossel (LKB), France. Both data are shown in Fig. 2 and
labeled by Berkeley-18 and LKB-11, respectively. We also
observe that there exists tension between the ae and
h=mð133CsÞ measurements; their inferred values of α differ
by five times the uncertainty of the 2018 recommended value
of α. Nevertheless, no expansion factor for the uncertainties of
these three input data is required.

E. Muon magnetic-moment anomaly

The theoretical expression for the muon magnetic-moment
anomaly aμ is omitted from this CODATA adjustment as in the
two previous adjustments. Although there has been progress
in the theory in the past four years, there are still concerns
about the hadronic and light-by-light vacuum-polarization
contributions, and the 3σ to 4σ disagreement between theory
and experiment remains. Currently, researchers at the
Experiment E989 (Keshavarzi, 2019) of the Fermi National
Accelerator Laboratory, USA and the muon g − 2 J-PARC
experiment (Abe et al., 2018) of the High Energy Accelerator
Research Organization (KEK), Japan hope to resolve this
discrepancy.

F. Newtonian constant of gravitation

Inconsistencies among measurements of the Newtonian
constant of gravitationG have long been a problem. This is no
different in the 2018 adjustment. Sixteen measurements lead
to a relative uncertainty ur ¼ 2.2 × 10−5, a factor of two
reduction compared to our previous adjustment. An expansion
factor of 3.9, however, is needed to reduce the absolute value
of all residuals below two. Two recent results, both with
relative standard uncertainties of 1.2 × 10−5 (Li et al., 2018),
have contributed to the improved recommended value. The
two values differ by 2.7 times the root-mean square of their
uncertainties.

V. OUTLINE OF PAPER

The remainder of the paper describes the input data in the
2018 CODATA adjustment, analyzes these data where appro-
priate, and explains the observational equations. Recommended
values of the fundamental constants and conversion factors of
energy equivalents are presented and discussed.
We begin by describing the relationship among four impor-

tant adjusted constants in theCODATAadjustments. SectionVI
shows how the determination of the Rydberg constant, the
Hartree energy, the fine-structure constant, the electron mass,
and the atomic mass constant are interconnected.
The next five sections describe five types of experiments

that determine the values of these five fundamental constants.
Section VII explains the theory for and measurements of
transition energies in hydrogen and deuterium relevant to the
determination of the Rydberg constant or the Hartree energy.

599.89

599.89

599.9

599.9

599.91

599.91

599.92

599.92

[
1

137.03]  10
5

CODATA-18

a
e
 Harvard-08

h/mRb LKB-11

h/mCs Berkeley-18

FIG. 2. Results of measurements relevant for determining the
2018 CODATA recommended value of the fine-structure constant
α. Error bars correspond to one-standard-deviation uncertainties.
Labels “Harvard-08,” “LKB-11,” and “Berkeley-18” denote the
laboratories and the last two digits of the year in which the result
was reported. The individual values for ðα−1 − 137.03Þ × 105 are
599.9150(33), 599.8998(85), and 599.9048(28) for Harvard-08,
LKB-11, and Berkeley-18, respectively. See discussion of this
figure for references.
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Section VIII summarizes the theory for the magnetic-
moment anomaly or g-factor of the electron. In addition,
the sole direct measurement of the anomaly is discussed. This
measurement is one of two ways to determine the fine-
structure constant.
Section IX describes input data for the relative atomic

masses of various nuclei and atoms, i.e., masses specified in
units of the atomic mass constant or, equivalently, atomic mass
units. Electron ionization and removal energies of H, 3H, 3He,
4He, 12C, and 28Si are also specified. Section X describes atom-
recoil experiments, which determine the mass of neutral 87Rb
and 133Cs atoms in SI unit kg.
Section XI explains the theoretical calculations of the

g-factor of the electron in hydrogenic 12C5þ and 28Si13þ. In
addition, the section describes measurements of the ratio of
precession to cyclotron frequencies of these hydrogenic ions.
Together, these theoretical g-factors and measurements, after
accounting for electron removal energies, are the most
accurate means to determine the electron mass in atomic
mass units (or the atomic mass constant in units of the
electron mass).
The next two sections describe input data that determine the

proton and deuteron charge radii. Section XII summarizes
theory for and spectroscopic measurements of the Lamb shift
for muonic hydrogen and deuterium. Proton and deuteron
charge radii from electron-proton and electron-deuteron elas-
tic scattering data are described in Sec. XIII.
Sections XIVand XV describe the input data for magnetic-

moment ratios of light nuclei. Both theoretical estimates and
experimental data for these ratios are given.
The g-factor and mass of the muon are discussed in the

next two sections. Section XVI describes both theoretical
calculations and measurements of the magnetic-moment
anomaly of the muon. Due to long-standing discrepancies
between the theory and experiments, the Task Group has
decided to only use the experimental data to determine the
muon anomaly.
Section XVII describes the input data for the determination

of the mass of the muon relative to that of the electron. Data
rely on measurements and theoretical calculations of the
hyperfine splitting of ground-state muonium, an electron
bound to an antimuon. These data also fix the muon-to-proton
magnetic-moment ratio.
Section XVIII summarizes the input data that determine the

lattice spacing of natural silicon. Section XIX describes the
input data for the determination of the Newtonian constant of
gravitation. Section XX gives values for some electroweak
quantities, i.e., the Fermi coupling constant and the weak
mixing angle.
Section XXI lists the 2018 CODATA recommended Values.

Tables of values and some calculational details are given.
Section XXII gives a summary and conclusion based on a
comparison of 2014 and 2018 CODATA recommended
values. Changes in values are either due to the revision of
the SI or due to newly available input data. We give
implications of the 2018 adjustment for electrical metrology,
the proton radius and Rydberg constant, the fine-structure
constant, and Newton’s gravitational constant. We also make
suggestions for future work.

VI. RELATIONSHIPS AMONG THE RYDBERG
CONSTANT, FINE-STRUCTURE CONSTANT, ELECTRON
MASS, AND ATOMIC MASS CONSTANT

Several sections in this article describe, in detail, how the
Rydberg constant R∞, the Hartree energy Eh, fine-structure
constant α, the atomic mass constant mu, and the electron
mass me are determined. Their determinations are interrelated
in CODATA adjustments and involve five distinct measure-
ments combined with state-of-the-art theoretical calculations
within QED. A succinct, simplified flow diagram of the most
important relationships and measurements is shown in Fig. 3.
At the heart of the diagram are the relationships

Eh ≡ 2R∞hc ¼ α2mec2; ð4Þ

where h and c are exact in the revised SI. The relationships,
for example, imply that measuring two of Eh, α, or me in SI
units determines the third. (Of course, the dimensionless fine-
structure constant will have the same numerical value in any
complete set of units.) Alternatively, measuring all three
constants confirms the validity of the equation.
Spectroscopy on the hydrogen atom, discussed in Sec. VII,

and, in particular, the measurement of the 1S-to-2S transition
energy or frequency determines the Rydberg constant or,
equivalently, the Hartree energy in SI units. In fact, R∞ or Eh
has a unique place in the adjustment. Its relative uncertainty is
orders of magnitude smaller than that of our other adjusted
constants.
The measurement of the ratio of spin-precession and

cyclotron frequencies of a single, free electron in a magnetic
flux density gives an accurate value for its g-factor. Combined
with theoretical calculations of g as a function of α, this gives a
competitive value for α. Details are given in Sec. VIII. Of the
adjusted constants, the fine-structure constant has the second
smallest relative uncertainty. Currently, the two types of
measurements combined with Eq. (4) give the most accurate
value for me in kg.
Measurements of the ratio of precession and cyclotron

frequencies of hydrogenic 12C5þ (and to a lesser extent
28Si13þ) are used to determine the relative atomic mass of
the electron, ArðeÞ ¼ me=mu. Here, theoretical calculations of
the g-factor of the bound electron (as a function of α) are also
essential. Details can be found in Sec. XI. From the meas-
urement of ArðeÞ and the value for the electron mass, an
accurate value for the atomic mass constant mu is derived.
Finally, Fig. 3 shows how atom-recoil experiments that

measure the mass of 87Rb and 133Cs in kg combined with
measurements of their relative atomic masses as compiled by
the Atomic Mass Data Center form a second pathway to
determine me, but most importantly, a second competitive
determination of the fine-structure constant. These experi-
ments and data are discussed in Secs. IX and X, respectively.
The directions of the arrows in Fig. 3 indicate the paths

traversed to find the most accurate values for our four
constants. The figure, however, does not show all relation-
ships. For example, atom-recoil experiments and the data from
the Atomic Mass Data Center can be used to determine mu as
well. Its value, however, would be less accurate. The transition
energies among the eigenstates in hydrogen also depend on α
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and, thus, could constrain its value. Still, the measurement of
the g-factor of the free-electron and atom-recoil experiments
are currently the best means to determine α. Moreover,
hydrogen spectroscopy is also used to constrain the proton
radius.

VII. ATOMIC HYDROGEN AND DEUTERIUM
TRANSITION ENERGIES

The comparison of theory and experiment for electronic
transition energies in atomic hydrogen and deuterium is
currently the most precise way to determine the Rydberg
constant, or equivalently the Hartree energy, and to a lesser
extent the charge radii of the proton and deuteron. Here, we
summarize the theory of and the experimental input data on H
and D energy levels in Secs. VII.A and VII.C, respectively.
The charge radii of the proton and deuteron are also

constrained by data and theory on muonic hydrogen and
muonic deuterium as well as by those from electron scattering.
These data are discussed in Secs. XII and XIII, respectively.
The electronic eigenstates of H and D are conveniently

labeled by nlj, where n ¼ 1; 2;… is the principal quantum
number, l ¼ 0; 1;…; n − 1 is the quantum number for the
electron orbital angular momentum L, and j ¼ l� 1=2 is the
quantum number of the total electronic angular momentum J.
Following the usual convention, we use S, P, D, … to denote
l ¼ 0; 1; 2;… states.

Theoretical values for the energy levels of H and D are
determined by the Dirac eigenstate energies, QED effects such
as self-energy and vacuum-polarization corrections, as well as
proton size and nuclear recoil effects. The expression for
energy levels quickly becomes complex. The energies, how-
ever, do satisfy

E ¼ −
Eh

2n2
ð1þ F Þ ¼ −

R∞hc
n2

ð1þ F Þ; ð5Þ

where Eh ¼ α2mec2 ¼ 2R∞hc is the Hartree energy, R∞ is the
Rydberg constant, and α is the fine-structure constant. The
dimensionless F , small compared to one, is determined by
QED, recoil corrections, etc. Consequently, the measured H
and D transition energies determine Eh and R∞ as h and c are
exact in the SI. The transition energy between states i and i0

with energies Ei and Ei0 is given by

ΔEii0 ¼ Ei0 − Ei: ð6Þ

Alternatively, we write ΔEii0 ¼ ΔEði − i0Þ.

A. Theory of hydrogen and deuterium energy levels

This section describes the theory of hydrogen and deu-
terium energy levels. References to the original literature are
generally omitted; these may be found in the recent review by
Yerokhin, Pachucki, and Patkóš (2019), on which we rely for
recent developments, but also in earlier CODATA reports,
Sapirstein and Yennie (1990) and Eides, Grotch, and Shelyuto
(2001, 2007). Literature references to new developments are
given where appropriate. Nine contributions to the energies
with different physical origins have been isolated. Each is
discussed in one of the following subsections. Moreover, each
contribution has “correlated” and/or “uncorrelated” uncertain-
ties due to limitations in the calculations. An important
correlated uncertainty is where a contribution to the energy
has the form C=n3 with a coefficient C that is the same for
states with the same l and j. The uncertainty in C leads to
correlations among energies of states with the same l and j.
Such uncertainties are denoted as uncertainty type u0 in the
text. Uncorrelated uncertainties, i.e., those independent of the
quantum numbers, are denoted as type un. Other correlations
are those between corrections for the same state in different
isotopes, where the difference in the correction is only due to
the difference in the masses of the isotopes. Calculations of the
uncertainties of the energy levels and the corresponding
correlation coefficients are further described in Sec. VII.B.

1. Dirac eigenvalue

The largest contribution to the energies is the Dirac
eigenvalue for an electron bound to an infinitely heavy point
nucleus or a stationary point nucleus. It is

ED ¼ fðn; κÞmec2; ð7Þ

where

FIG. 3. Relationships in the determinations of Eh, α,me, andmu
(red text and symbols) as well as the theoretical and experimental
means (black text with orange measured quantity) to determine
their values. Blue directed arrows give the most commonly
traversed connections between the constants and measured
quantities.
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fðn; κÞ ¼
�
1þ ðZαÞ2

ðn − δÞ2
�−1=2

; ð8Þ

with δ ¼ jκj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − ðZαÞ2

p
and κ is the angular momentum-

parity quantum number (κ ¼ −1; 1;−2; 2;−3 for lj ¼ S1=2,
P1=2, P3=2, D3=2, and D5=2 states, respectively). States with the
same n and j ¼ jκj − 1=2 have degenerate eigenvalues.
Finally, l ¼ jκ þ 1=2j − 1=2 and we retain the atomic number
Z in the equations in order to classify the various contributions
to the energies in this and other sections.
For a nucleus with a finite mass mN , we have

EMðHÞ ¼ Mc2 þ ½fðn; κÞ − 1�mrc2 − ½fðn; κÞ − 1�2 m
2
r c2

2M

þ 1 − δl0
κð2lþ 1Þ

ðZαÞ4m3
r c2

2n3m2
N

þ � � � ð9Þ

for hydrogen and

EMðDÞ ¼ Mc2 þ ½fðn; κÞ − 1�mrc2 − ½fðn; κÞ − 1�2 m
2
r c2

2M

þ 1

κð2lþ 1Þ
ðZαÞ4m3

r c2

2n3m2
N

þ � � � ð10Þ

for deuterium, where δll0 is the Kronecker delta,
M ¼ me þmN , and mr ¼ memN=ðme þmNÞ is the reduced
mass. Note that in this equation the energy of nS1=2 states
differs from that of nP1=2 states.
It is worth noting that in Eqs. (9) and (10) we follow a

slightly different classification of terms when compared to that
used by Yerokhin, Pachucki, and Patkóš (2019). Specifically,
contributions of order ðme=mNÞ2ðZαÞ4mec2 in our equations
are classified as relativistic-recoil corrections that are second
order in the mass ratio by Yerokhin, Pachucki, and Patkóš
(2019). The remaining difference between the CODATA
expressions for the Dirac energy and those of Yerokhin,
Pachucki, and Patkóš (2019) is of order ðme=mNÞ2ðZαÞ6mec2,
negligible for our current purposes.

2. Relativistic recoil

The leading relativistic-recoil correction, to lowest order in
Zα and all orders inme=mN , is (Erickson, 1977; Sapirstein and
Yennie, 1990)

ES ¼ m3
r

m2
emN

ðZαÞ5
πn3

mec2

×

�
1

3
δl0 lnðZαÞ−2 −

8

3
ln k0ðn;lÞ −

1

9
δl0 −

7

3
an

−
2

m2
N −m2

e
δl0

�
m2

N ln

�
me

mr

�
−m2

e ln

�
mN

mr

���
; ð11Þ

where an ¼ −2 lnð2=nÞ − 2þ 1=n − 2
P

n
i¼1ð1=iÞ for l ¼ 0

and an ¼ 1=½lðlþ 1Þð2lþ 1Þ� otherwise. Values for the
Bethe logarithms ln k0ðn;lÞ are given in Table II.
Additional contributions to lowest order in the mass ratio

and of higher order in Zα are

ER ¼ me

mN

ðZαÞ6
n3

mec2½D60 þ ZαGRECðZαÞ�; ð12Þ

where D60 ¼ 4 ln 2 − 7=2 for l ¼ 0 and D60 ¼
2½3 − lðlþ 1Þ=n2�=½ð2l − 1Þð2lþ 1Þð2lþ 3Þ� otherwise.
The function GRECðxÞ is

GRECðxÞ ¼ D72ln2ðx−2Þ þD71 lnðx−2Þ þD70 þ � � � ; ð13Þ

where D72 ¼ −11=ð60πÞδl0. Other D7x coefficients are not
known analytically. Instead, we use the numerically computed
GRECðxÞ of Yerokhin and Shabaev (2015, 2016) for nS states
with n ¼ 1;…; 5 as well as for the 2P1=2 and 2P3=2 states. For
x ¼ α, these values and uncertainties (both multiplied by π)
are reproduced in Table III. For nS states with n ¼ 6; 8, we
extrapolate GRECðαÞ using g0 þ g1=n, where coefficients g0
and g1 are found from fitting to the n ¼ 4 and 5 values of
GRECðαÞ. The values are 14.8(1) and 14.7(2) for n ¼ 6 and 8,
with uncertainties based on comparison to values obtained by
fitting g0 þ g1=nþ g2=n2 to the n ¼ 3; 4, and 5 values. For
the other l > 0 states, we useGRECðxÞ ¼ 0 and an uncertainty
in the relativistic-recoil correction ES þ ER equal to 0.01ER.
The covariances for ES þ ER between pairs of states with

the same l and j follow the dominant 1=n3 scaling of the
uncertainty, i.e., are of type u0.

3. Self-energy

The one-photon self-energy of an electron bound to a
stationary point nucleus is

Eð2Þ
SE ¼ α

π
ðZαÞ4
n3

FðZαÞmec2; ð14Þ

TABLE II. Relevant values of the Bethe logarithms ln k0ðn; lÞ.
Missing entries are for states for which no experimental measure-
ments are included.

n S P D

1 2.984 128 556
2 2.811 769 893 −0.030 016 709
3 2.767 663 612
4 2.749 811 840 −0.041 954 895 −0.006 740 939
6 2.735 664 207 −0.008 147 204
8 2.730 267 261 −0.008 785 043
12 −0.009 342 954

TABLE III. Values of the function π ×GRECðx ¼ αÞ from Yerokhin
and Shabaev (2015, 2016). Numbers in parentheses are the one-
standard-deviation uncertainty in the last digit of the value. [The
definitions of GRECðxÞ in this adjustment and that of Yerokhin and
Shabaev (2015, 2016) differ by a factor π.] Missing entries are states
for which data are not available from these references.

n S P1=2 P3=2

1 9.720(3)
2 14.899(3) 1.5097(2) −2.1333ð2Þ
3 15.242(3)
4 15.115(3)
5 14.941(3)
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where the function FðxÞ is

FðxÞ ¼ A41 lnðx−2Þ þ A40 þ A50xþ A62x2 ln2ðx−2Þ
þ A61x2 lnðx−2Þ þ GSEðxÞx2; ð15Þ

with A41 ¼ ð4=3Þδl0, A40 ¼ −ð4=3Þ ln k0ðn;lÞ þ 10=9 for
l ¼ 0 and A40 ¼ −ð4=3Þ ln k0ðn;lÞ − 1=½2κð2lþ 1Þ� other-
wise. Next, A50 ¼ ð139=32 − 2 ln 2Þπδl0, A62 ¼ −δl0, and

A61 ¼
�
4

�
1þ 1

2
þ � � � þ 1

n

�
þ 28

3
ln 2 − 4 ln n

−
601

180
−

77

45n2

�
δl0 þ

n2 − 1

n2

�
2

15
þ 1

3
δj 1

2

�
δl1

þ ½96n2 − 32lðlþ 1Þ�ð1 − δl0Þ
3n2ð2l − 1Þð2lÞð2lþ 1Þð2lþ 2Þð2lþ 3Þ :

Values for GSEðαÞ in Eq. (15) are listed in Table IV. The
uncertainty of the self-energy contribution is due to the
uncertainty of GSEðαÞ listed in the table and is taken to be
type un. See Mohr, Taylor, and Newell (2012a) for details.
Following convention, FðZαÞ is multiplied by the factor

ðmr=meÞ3, except the magnetic-moment term −1=½2κð2lþ1Þ�
in A40, which is instead multiplied by the factor ðmr=meÞ2,
and the argument ðZαÞ−2 of the logarithms is replaced by
ðme=mrÞðZαÞ−2.

4. Vacuum polarization

The stationary point nucleus second-order vacuum-
polarization level shift is

Eð2Þ
VP ¼ α

π
ðZαÞ4
n3

HðZαÞmec2; ð16Þ

where HðxÞ ¼ Hð1ÞðxÞ þHðRÞðxÞ with

Hð1ÞðxÞ ¼ V40 þ V50xþ V61x2 lnðx−2Þ þ Gð1Þ
VPðxÞx2:

Here, V40 ¼ −ð4=15Þδl0, V50 ¼ ð5π=48Þδl0, and V61 ¼
−ð2=15Þδl0. Values of Gð1Þ

VPðαÞ are given in Table V.

Moreover, HðRÞðxÞ ¼ GðRÞ
VP ðxÞx2 with

GðRÞ
VP ðxÞ ¼

19

45
−
π2

27
þ
�
1

16
−
31π2

2880

�
πxþ � � � ð17Þ

for l ¼ 0. Higher-order and higher-l terms are negligible. We
multiply Eq. (16) by ðmr=meÞ3 and include a factor of
ðme=mrÞ in the argument of the logarithm of the term
proportional to V61.
Vacuum polarization from μþμ− pairs is

Eð2Þ
μVP ¼ α

π
ðZαÞ4
n3

�
−

4

15
δl0

��
me

mμ

�
2
�
mr

me

�
3

mec2; ð18Þ

while the hadronic vacuum polarization is given by

Eð2Þ
hadVP ¼ 0.671ð15ÞEð2Þ

μVP: ð19Þ

Uncertainties are of type u0. The muonic and hadronic
vacuum-polarization contributions are negligible for higher-l
states.

5. Two-photon corrections

The two-photon correction is

Eð4Þ ¼
�
α

π

�
2 ðZαÞ4

n3
Fð4ÞðZαÞmec2; ð20Þ

where

TABLE IV. Values of the function GSEðαÞ.
n S1=2 P1=2 P3=2 D3=2 D5=2

1 −30.290 240ð20Þ
2 −31.185 150ð90Þ −0.973 50ð20Þ −0.486 50ð20Þ
3 −31.047 70ð90Þ
4 −30.9120ð40Þ −1.1640ð20Þ −0.6090ð20Þ 0.031 63(22)
6 −30.711ð47Þ 0.034 17(26)
8 −30.606ð47Þ 0.007 940(90) 0.034 84(22)
12 0.009 130(90) 0.035 12(22)

TABLE V. Values of the function Gð1Þ
VPðαÞ.

n S1=2 P1=2 P3=2 D3=2 D5=2

1 −0.618 724
2 −0.808 872 −0.064 006 −0.014 132
3 −0.814 530
4 −0.806 579 −0.080 007 −0.017 666 −0.000 000
6 −0.791 450 −0.000 000
8 −0.781 197 −0.000 000 −0.000 000
12 −0.000 000 −0.000 000
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Fð4ÞðxÞ ¼ B40 þ B50xþ B63x2ln3ðx−2Þ þ B62x2ln2ðx−2Þ
þ B61x2 lnðx−2Þ þ B60x2 þ B72x3ln2ðx−2Þ
þ B71x3 lnðx−2Þ þ � � � ð21Þ

with

B40 ¼
�
3π2

2
ln 2 −

10π2

27
−
2179

648
−
9

4
ζð3Þ

�
δl0

þ
�
π2 ln 2

2
−
π2

12
−
197

144
−
3ζð3Þ
4

�
1 − δl0

κð2lþ 1Þ ;

B50 ¼ −21.554 47ð13Þδl0;
B63 ¼ −ð8=27Þδl0;

B62 ¼
16

9

�
71

60
− ln 2þ ψðnÞ þ γ − ln n −

1

n
þ 1

4n2

�
δl0

þ 4

27

n2 − 1

n2
δl1:

Here, ζðzÞ, γ, and ψðzÞ are the Riemann zeta function, Euler’s
constant, and the psi function, respectively, and

B61 ¼
�
413 581

64 800
þ 4NðnSÞ

3
þ 2027π2

864
−
616 ln 2
135

−
2π2 ln 2

3

þ 40ln22
9

þ ζð3Þ þ
�
304

135
−
32 ln 2

9

��
3

4
þ γ

þ ψðnÞ − ln n −
1

n
þ 1

4n2

�
−
43

36
þ 133π2

864

�
δl0

þ
�
4

3
NðnPÞ þ n2 − 1

n2

�
31

405
þ 1

3
δj 1

2
−

8

27
ln 2

��
δl1;

where the relevant values and uncertainties for the function
NðnlÞ are given in Table VI. The last two terms contributing
to B61 for S states are recently computed light-by-light
corrections obtained by Czarnecki and Szafron (2016).
Before describing the next term in Eq. (21), i.e., B60, it is

useful to observe that Karshenboim and Ivanov (2018b) have
derived that

B72 ¼
�
−
139

48
þ 4 ln 2

3
−

5

72

�
π δl0:

In addition, they find the difference

B71ðnSÞ−B71ð1SÞ

¼ π
�
427

36
−
16

3
ln2

��
3

4
−
1

n
þ 1

4n2
þψðnÞþ γ− lnn

�
ð22Þ

for S states, but also that

B71ðnPÞ ¼ π
�
139

144
−
4 ln 2
9

þ 5

216

��
1 −

1

n2

�

for P states, and B71ðnlÞ ¼ 0 for states with l > 1.
We determine the coefficients B60ð1SÞ and B71ð1SÞ by

combining the analytical expression for B72 and the values and
uncertainties for the remainder

GQED2ðxÞ ¼ B60 þ B72x ln2ðx−2Þ þ B71x lnðx−2Þ þ � � � ð23Þ

for the 1S state extrapolated to x ≤ 2α by Yerokhin, Pachucki,
and Patkóš (2019) from numerical calculations ofGQED2ðxÞ as
a function of x for x ¼ Zα with Z ≥ 15 given by Yerokhin,
Indelicato, and Shabaev (2008) and Yerokhin (2009, 2018).
Specifically, the remainder has three contributions. The largest
by far has been evaluated at x ¼ 0 and α. The remaining two
are available for x ¼ α and 2α. Fits to each of the three
contributions give corresponding contributions to B60ð1SÞ and
B71ð1SÞ. We assign a type-u0 state-independent standard
uncertainty of 9.3 for B60ð1SÞ and a 10% type-u0 uncertainty
to B71ð1SÞ. The difference B60ðnSÞ − B60ð1SÞ, given by
Jentschura, Czarnecki, and Pachucki (2005), is then used to
obtain B60ðnSÞ for n > 1 and adds an additional small
state-dependent uncertainty. Similarly, the expression for
B71ðnSÞ − B71ð1SÞ in Eq. (22) is used to determine B71ðnSÞ.
Values for B60 for nP and nD states with n ¼ 1;…; 6 are

those published by Jentschura, Czarnecki, and Pachucki
(2005) and Jentschura (2006), but using in place of the results
in Eqs. (A3) and (A6) of the latter paper the corrected results
given in Eqs. (24) and (25) by Yerokhin, Pachucki, and Patkóš
(2019). For n > 6, we use B60 ¼ g0 þ g1=n with g0 and g1
determined from the values and uncertainties of B60 at n ¼ 5

and 6.
Relevant values and uncertainties for B60ðnlÞ and B71ð1SÞ

are listed in Table VII. For the B60 of S states, the first
number in parentheses is the state-dependent uncertainty of
type un, while the second number in parentheses is the state-
independent uncertainty of type u0. Note that the extrapolation
procedure for nS states is by no means unique. In fact,
Yerokhin, Pachucki, and Patkóš (2019) used a different
approach that leads to consistent and equally accurate values
for B60ðnSÞ. For B71ð1SÞ and B60ðnlÞ with l > 0, the
uncertainties are of type u0.
As with the one-photon correction, the two-photon correc-

tion is multiplied by the reduced-mass factor ðmr=meÞ3, except
the magnetic-moment term proportional to 1=½κð2lþ 1Þ�
in B40 which is multiplied by the factor ðmr=meÞ2, and
the argument ðZαÞ−2 of the logarithms is replaced by
ðme=mrÞðZαÞ−2.

TABLE VI. Values of NðnlÞ used in the 2018 adjustment and from
Jentschura (2003) and Jentschura, Czarnecki, and Pachucki (2005).

n NðnSÞ NðnPÞ
1 17.855 672 03(1)
2 12.032 141 58(1) 0.003 300 635(1)
3 10.449 809(1)
4 9.722 413(1) −0.000 394 332ð1Þ
6 9.031 832(1)
8 8.697 639(1)
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6. Three-photon corrections

The three-photon contribution in powers of Zα is

Eð6Þ ¼
�
α

π

�
3 ðZαÞ4

n3
Fð6ÞðZαÞmec2; ð24Þ

where

Fð6ÞðxÞ ¼ C40 þ C50xþ C63x2ln3ðxÞ
þ C62x2ln2ðxÞ þ C61x2 ln xþ C60x2 þ � � � : ð25Þ

The leading term C40 is

C40 ¼
�
−
568a4
9

þ 85ζð5Þ
24

−
121π2ζð3Þ

72
−
84071ζð3Þ

2304
−
71ln42
27

−
239π2ln22

135
þ 4787π2 ln2

108
þ 1591π4

3240
−
252251π2

9720

þ 679441

93312

�
δl0þ

�
−
100a4
3

þ 215ζð5Þ
24

−
83π2ζð3Þ

72

−
139ζð3Þ

18
−
25ln42
18

þ 25π2ln22
18

þ 298π2 ln2
9

þ 239π4

2160
−
17101π2

810
−
28259

5184

�
1− δl0

κð2lþ 1Þ ;

where a4¼
P∞

n¼1 1=ð2nn4Þ¼0.517 479 061…. Partial results
for C50 have been calculated by Eides and Shelyuto (2004,
2007). We use C50 ¼ 0 with uncertainty 30δl0 of type u0.
Karshenboim and Ivanov (2018b) derived that

C63 ¼ 0

and

C62 ¼ −
2

3

�
−
1523

648
−
10π2

27
þ 3

2
π2 ln 2 −

9

4
ζð3Þ − 82

81

�
δl0:

They also presented an expression for the difference
C61ðnSÞ − C61ð1SÞ as well as

C61ðnPÞ¼
2

9

n2−1

n2

�
−
1523

648
−
10π2

27
þ3

2
π2 ln2−

9

4
ζð3Þ−82

81

�
;

and C61ðnlÞ ¼ 0 for l > 1. We do not use the expression for
the difference. Instead, we assume that C61ðnSÞ ¼ 0 with an

uncertainty of 10 of type un. Finally, we set C60 ¼ 0 with
uncertainty 1 of type un for P and higher l states. For S states
we also use C60 ¼ 0, but do not need to specify an uncertainty
as the uncertainty of their three-photon correction is deter-
mined by the uncertainties of C50 and C61.
The dominant effect of the finite mass of the nucleus is

taken into account by multiplying terms proportional to δl0 by
the reduced-mass factor ðmr=meÞ3 and the term proportional
to 1=½κð2lþ 1Þ�, the magnetic-moment term, by the fac-
tor ðmr=meÞ2.
The contribution from four photons is expected to be

negligible at the level of uncertainty of current interest.

7. Finite nuclear size and polarizability

Finite-nuclear-size and nuclear-polarizability corrections
are ordered by powers in α, following Yerokhin, Pachucki,
and Patkóš (2019), rather than by finite size and polarizability.
Thus, we write for the total correction

Enucl ¼
X∞
i¼4

EðiÞ
nucl; ð26Þ

where index i indicates the order in α. The first and lowest-
order contribution is

Eð4Þ
nucl ¼

2

3
mec2

ðZαÞ4
n3

�
mr

me

�
3
�
rN
ƛC

�
2

δl0 ð27Þ

and is solely due to the finite root-mean-square (rms) charge
radius rN of nucleus N. Here, ƛC ¼ ℏ=mec is the reduced
Compton wavelength of the electron.
The α5 correction has both nuclear-size and polarizability

contributions and has been computed by Tomalak (2019). For
hydrogen, the correction is parametrized as

Eð5Þ
nuclðHÞ ¼ −

1

3
mec2

ðZαÞ5
n3

�
mr

me

�
3
�
rpF
ƛC

�
3

δl0 ð28Þ

with effective Friar radius for the proton

rpF ¼ 1.947ð75Þ fm: ð29Þ

The functional form of Eq. (28) is inspired by the results of
Friar (1979) and his definition of the third Zemach moment.
For deuterium, the α 5 correction is parametrized as

(Yerokhin, Pachucki, and Patkóš, 2019)

TABLE VII. Values of B60 and B71ðnS1=2Þ used in the 2018 adjustment. The uncertainties of B60 are explained in
the text.

n B60ðnS1=2Þ B60ðnP1=2Þ B60ðnP3=2Þ B60ðnD3=2Þ B60ðnD5=2Þ B71ðnS1=2Þ
1 −78.7ð0.3Þð9.3Þ −116ð12Þ
2 −63.6ð0.3Þð9.3Þ −1.8ð3Þ −1.8ð3Þ −100ð12Þ
3 −60.5ð0.6Þð9.3Þ −94ð12Þ
4 −58.9ð0.8Þð9.3Þ −2.5ð3Þ −2.5ð3Þ 0.178(2) −91ð12Þ
6 −56.9ð0.8Þð9.3Þ 0.207(4) −88ð12Þ
8 −55.9ð2.0Þð9.3Þ 0.245(5) 0.221(5) −86ð12Þ
12 0.259(7) 0.235(7)
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Eð5Þ
nuclðDÞ¼−

1

3
mec2

ðZαÞ5
n3

�
mr

me

�
3

×

�
Z

�
rpF
ƛC

�
3

þðA−ZÞ
�
rnF
ƛC

�
3
�
δl0þEð5Þ

polðDÞ ð30Þ

with atomic number A, effective Friar radius for the neutron

rnF ¼ 1.43ð16Þ fm; ð31Þ

and two-photon polarizability

Eð5Þ
polðDÞ=h ¼ −21.78ð22Þ δl0

n3
kHz: ð32Þ

In principle, the effective Friar radius for the proton might
be different in hydrogen and deuterium. Similarly, the Friar
radius of the neutron extracted from electron-neutron scatter-
ing can be different from that in a deuteron. We assume that
such changes in the Friar radii are smaller than the quoted
uncertainties.
The α 6 correction has finite-nuclear-size, nuclear-

polarizability, and radiative finite-nuclear-size contributions

and can thus be written as Eð6Þ
nucl ¼ Eð6Þ

fns þ Eð6Þ
pol þ Eð6Þ

rad. The
finite-nuclear-size and nuclear-polarizability contributions are
given by Pachucki, Patkóš, and Yerokhin (2018). The finite-
nuclear-size contribution is

Eð6Þ
fns ¼ mec2

ðZαÞ6
n3

�
mr

me

�
3
�
rN
ƛC

�
2
�
−
2

3

�
9

4n2
− 3 −

1

n

þ 2γ − lnðn=2Þ þ ψðnÞ þ ln

�
mr

me

rN2

ƛC
Zα

��
δl0

þ 1

6

�
1 −

1

n2

�
δκ1

�
; ð33Þ

and the polarization contribution for hydrogen is

Eð6Þ
polðHÞ=h ¼ 0.393

δl0
n3

kHz ð34Þ

with a 100% uncertainty and for deuterium

Eð6Þ
polðDÞ=h ¼ −0.541

δl0
n3

kHz ð35Þ

with a 75% uncertainty. The effective radius rN2 describes
high-energy contributions and is given by

rN2 ¼ 1.068 497rN: ð36Þ

The radiative finite-nuclear-size contribution of order α 6 is
(Eides, Grotch, and Shelyuto, 2001)

Eð6Þ
rad ¼

2

3
mec2

αðZαÞ5
n3

�
mr

me

�
3
�
rN
ƛC

�
2

ð4 ln 2 − 5Þδl0: ð37Þ

Next-order radiative finite-nuclear-size corrections of order α 7

also have logarithmic dependencies on α; see Yerokhin
(2011). In fact, for nS states we have

Eð7Þ
nucl ¼

2

3
mec2

αðZαÞ6
πn3

�
mr

me

�
3
�
rN
ƛC

�
2

×

�
−
2

3
ln2fðZαÞ−2g þ ln2

�
mr

me

rN
ƛC

��
: ð38Þ

We assume a zero value with uncertainty 1 for the uncomputed
coefficient of lnðZαÞ−2 inside the square brackets. For nPj
states we have

Eð7Þ
nucl ¼

1

6
mec2

αðZαÞ6
πn3

�
mr

me

�
3
�
rN
ƛC

�
2
�
1−

1

n2

�

×

�
8

9
lnfðZαÞ−2g− 8

9
ln2þ 11

27
þ δκ1 þ

4n2

n2 − 1
NðnPÞ

�
ð39Þ

with a zero value for the uncomputed coefficient of Zα inside
the square brackets with an uncertainty of 1. [This equation
fixes a typographical error in Eq. (64) of Yerokhin, Pachucki,
and Patkóš (2019). See also Eq. (31) of Jentschura (2003).]
We assume a zero value for states with l > 1.
Uncertainties in this subsection are of type u0. Higher-order

corrections are expected to be negligible.

8. Radiative-recoil corrections

Corrections for radiative-recoil effects are

ERR ¼
m3

r

m2
emN

αðZαÞ5
π2n3

mec2δl0

�
6ζð3Þ− 2π2 ln2þ 35π2

36
−
448

27

þ 2

3
πðZαÞln2fðZαÞ−2gþ � � �

�
: ð40Þ

We assume a zero value for the uncomputed coefficient of
ðZαÞ lnðZαÞ−2 inside the square brackets with an uncertainty
of 10 of type u0 and 1 for type un. Corrections for higher-l
states are negligible.

9. Nucleus self-energy

The nucleus self-energy correction is

ESEN ¼ 4Z2αðZαÞ4
3πn3

m3
r

m2
N
c2
�
ln

�
mN

mrðZαÞ2
�
δl0 − ln k0ðn;lÞ

�
;

ð41Þ

with an uncertainty of 0.5 for S states in the constant
(α-independent) term in square brackets. This uncertainty is
of type u0 and given by Eq. (41) with the factor in the
square brackets replaced by 0.5. For higher-l states, the
correction is negligibly small compared to current experi-
mental uncertainties.

B. Total theoretical energies and uncertainties

The theoretical energy of centroid EnðLÞ of a relativistic
level L ¼ nlj is the sum of the contributions given
in Secs. VII.A.1–VII.A.9. Here, atom X ¼ H or D.
Uncertainties in the adjusted constants that enter the
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theoretical expressions are found by the least-squares adjust-
ment. Here, the most important adjusted constants are
R∞ ¼ α2mec2=2hc, α, rp, and rd.
The uncertainty in the theoretical energy is taken into

account by introducing additive corrections to the energies.
Specifically, we write

EXðLÞ → EXðLÞ þ δthðX; LÞ

for relativistic levels L ¼ nlj in atom X. Here, energy
δthðX; LÞ is treated as an adjusted constant and we include
δXðLÞ as an input datum with zero value and an uncertainty
that is the square root of the sum of the squares of the
uncertainties of the individual contributions. That is,

u2½δXðLÞ� ¼
X
i

½u20iðX; LÞ þ u2niðX; LÞ�; ð42Þ

where energies u0iðX; LÞ and uniðX; LÞ are type-u0 and -un
uncertainties of contribution i. The observational equation
δXðLÞ ≐ δthðX; LÞ is added to χ2.
Covariances among the corrections δXðLÞ are accounted for

in the adjustment. We assume that nonzero covariances for a
given atom X only occur between states with the same l and j.
We then have

u½δXðn1ljÞ; δXðn2ljÞ� ¼
X
i

u0iðX; n2ljÞu0iðX; n1ljÞ;

when n1 ≠ n2 and only uncertainties of type u0 are present.
Covariances between the corrections δ for hydrogen and
deuterium in the same electronic state L are

u½δHðLÞ; δDðLÞ�
¼

X
i¼ficg

½u0iðH; LÞu0iðD; LÞ þ uniðH; LÞuniðD; LÞ�

and for n1 ≠ n2

u½δHðn1ljÞ; δDðn2ljÞ� ¼
X
i¼ficg

u0iðH; n1ljÞu0iðD; n2ljÞ;

where the summation over i is only over the uncertainties
common to hydrogen and deuterium. This excludes, for
example, contributions that depend on the nuclear-charge radii.
Values and standard uncertainties of δXðnljÞ are given in

Table VIII and the non-negligible covariances of the correc-
tions δ are given as correlation coefficients in Table IX.

C. Experimentally determined transition energies in hydrogen
and deuterium

Table X gives the measured transition energies as well as
measured weighted differences between transition energies in
hydrogen and deuterium used as input data in the 2018
adjustment. All but four data are the same as in the 2014
CODATA report. The new results in hydrogen are reviewed
in the next three subsections. The transition energies were
measured at the Max-Planck-Institut für Quantenoptik (MPQ),
Garching, Germany, the Laboratoire Kastler-Brossel (LKB),
Paris, France, and York University (York), Toronto, Canada.

These researchers considered the 2S − 4P, 1S − 3S, and
2S − 2P1=2 transitions.
Observational equations for the data are given in

Table XXIII. Values for additive corrections δXðnljÞ and
δhfs;H½nljðfÞ� to account for the uncertainties in the theoretical
expressions are given in Table VIII. Some of the data are
correlated and their correlation coefficients when greater than
0.0001 are given in Table IX.
The H and D input data are displayed in Fig. 4. The first

thing to note is that the data separate into 1S − 2S transition
energies measured to approximately h × 10 Hz and those that
have been measured to ∼h × 10 kHz. The uncertainties of
these input data are shown without the 1.6 expansion factor
applied to these data in the least-squares adjustment.
Secondly, the figure shows the adjusted, or fitted, transition
energies and their standard uncertainties for these input data
after the application of the 1.6 expansion factor. The values
and standard uncertainties of the fitted 1S − 2S transition
energies are in agreement with those of the experimental data.
The standard uncertainties of the fitted values for most of the
other data are an order of magnitude smaller than the
uncertainties of the corresponding input data. The exceptions
are three of the four newly added data. They are indicated as
MPQ(2017), LKB(2018), and York(2019) in Fig. 4. In

TABLE VIII. Summary of input data for the additive energy
corrections to account for missing contributions to the theoretical
description of the electronic hydrogen (H) and deuterium (D) energy
levels. These correspond to 25 additive corrections δH;DðnljÞ for the
centroids of levels nlj. The label in the first column is used in
Table IX to list correlation coefficients among these data and in
Table XXIII for observational equations. Relative uncertainties are
with respect to the binding energy.

Value Rel. stand.
Input datum (kHz) uncert. ur

B1 δHð1S1=2Þ=h 0.0(1.6) 4.9 × 10−13

B2 δHð2S1=2Þ=h 0.00(20) 2.4 × 10−13

B3 δHð3S1=2Þ=h 0.000(59) 1.6 × 10−13

B4 δHð4S1=2Þ=h 0.000(25) 1.2 × 10−13

B5 δHð6S1=2Þ=h 0.000(12) 1.3 × 10−13

B6 δHð8S1=2Þ=h 0.0000(51) 9.9 × 10−14

B7 δHð2P1=2Þ=h 0.0000(39) 4.8 × 10−15

B8 δHð4P1=2Þ=h 0.0000(16) 7.6 × 10−15

B9 δHð2P3=2Þ=h 0.0000(39) 4.8 × 10−15

B10 δHð4P3=2Þ=h 0.0000(16) 7.6 × 10−15

B11 δHð8D3=2Þ=h 0.000 000(13) 2.6 × 10−16

B12 δHð12D3=2Þ=h 0.000 0000(40) 1.8 × 10−16

B13 δHð4D5=2Þ=h 0.000 00(17) 8.2 × 10−16

B14 δHð6D5=2Þ=h 0.000 000(58) 6.3 × 10−16

B15 δHð8D5=2Þ=h 0.000 000(22) 4.2 × 10−16

B16 δHð12D5=2Þ=h 0.000 0000(64) 2.8 × 10−16

B17 δDð1S1=2Þ=h 0.0(1.5) 4.5 × 10−13

B18 δDð2S1=2Þ=h 0.00(18) 2.2 × 10−13

B19 δDð4S1=2Þ=h 0.000(23) 1.1 × 10−13

B20 δDð8S1=2Þ=h 0.0000(49) 9.6 × 10−14

B21 δDð8D3=2Þ=h 0.000 0000(95) 1.8 × 10−16

B22 δDð12D3=2Þ=h 0.000 0000(28) 1.2 × 10−16

B23 δDð4D5=2Þ=h 0.000 00(15) 7.5 × 10−16

B24 δDð8D5=2Þ=h 0.000 000(19) 3.8 × 10−16

B25 δDð12D5=2Þ=h 0.000 0000(58) 2.5 × 10−16
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summary, the 1S − 2S transition energies, these three input
data, and the muonic-H and muonic-D Lamb-shift measure-
ments to be discussed in Sec. XII determine the values of the
Rydberg constant and charge radii.

1. Measurement of the hydrogen 2S− 4P transition

The hydrogen transition energy from the 2S1=2 hyperfine
centroid to the 4P fine-structure centroid was measured by
Beyer et al. (2017) at the MPQ. This new datum is item A9 in
Table X. Here, the fine-structure centroid of a level nl is

EXðnlÞ ¼
1P

jð2jþ 1Þ
X
j

ð2jþ 1ÞEXðnljÞ; ð43Þ

where the sum over quantum number j runs from jl − 1=2j to
lþ 1=2 and EXðnljÞ is the hyperfine centroid of level nlj.
In the experiment, cold ground-state hydrogen atoms emerge

from a copper nozzle held at a temperature of 5.8 K. These
atoms are excited to the metastable 2S1=2ðf ¼ 0Þ hyperfine
level by a Doppler-free two-photon excitation using 243 nm
light, chopped on and off at 160 Hz, enabling a thorough study
of Doppler shifts. Starting from this metastable state, transition
energies for the hyperfine-resolved transitions 2S1=2ðf ¼ 0Þ →
4P1=2ðf ¼ 1Þ and 2S1=2ðf ¼ 0Þ → 4P3=2ðf ¼ 1Þ were mea-
sured to about 1 part in 10 000 of the linewidth using a
stable retroreflected 486 nm laser (Beyer et al., 2016) oriented
perpendicular to the propagation direction of the atoms.

Here, crucially dipole selection rules forbid excitations to
P3=2ðf ¼ 0Þ and P3=2ðf ¼ 2Þ states.
Atomic hydrogen in the 4P state mainly decays to the

ground 1S state by emission of a Lyman-γ 97 nm photon. At
MPQ, the emission rate of these photons as a function of the
486 nm laser frequency was detected. Lyman-γ radiation
ejects electrons from graphite, which, in turn, can be effi-
ciently counted with channel electron multipliers. Two such
detectors were used to retain some directional information
about the emitted Lyman-γ photons.
Important for the experiments was an analysis of line-shape

shifts and distortions of the two measured transitions due to
the presence of neighboring resonances. Following Jentschura
and Mohr (2002) but also Horbatsch and Hessels (2010,
2011), the MPQ researchers developed a line-shape model that
accounted for these so-called quantum interference effects as
well as demonstrated its validity based on directional infor-
mation of the Lyman-γ photons as a function of the direction
of the linear polarization of the 486 nm light.
Quantum interference effects in precision spectroscopic mea-

surements have a long history starting with Kramers and
Heisenberg (1925) and Low (1952) in the context of QED.
For a reviewof early observations of these effects, seeMarrus and
Mohr (1979). Jentschura and Mohr (2002) gave an early
theoretical analysis of the effect and noted that these interferences
are enhanced in differential or angular-dependent measurements.
The line-shape model indicated that the two measured

transition energies shifted up to h × 40 kHz by quantum
interference, which is much larger than the proton-radius

TABLE IX. Correlation coefficients rðxi; xjÞ > 0.0001 among the input data for the hydrogen and deuterium energy levels given in Tables X
and VIII. Coefficients r are strictly zero between input data An and Bm for positive integers n and m.

rðA1;A2Þ ¼ 0.1049 rðA1;A3Þ ¼ 0.2095 rðA1;A4Þ ¼ 0.0404 rðA2;A3Þ ¼ 0.0271 rðA2;A4Þ ¼ 0.0467
rðA3;A4Þ ¼ 0.0110 rðA6;A7Þ ¼ 0.7069 rðA10;A11Þ ¼ 0.3478 rðA10;A12Þ ¼ 0.4532 rðA10;A13Þ ¼ 0.1225

rðA10;A14Þ ¼ 0.1335 rðA10;A15Þ ¼ 0.1419 rðA10;A16Þ ¼ 0.0899 rðA10;A17Þ ¼ 0.1206 rðA10;A18Þ ¼ 0.0980
rðA10;A19Þ ¼ 0.1235 rðA10;A20Þ ¼ 0.0225 rðA10;A21Þ ¼ 0.0448 rðA11;A12Þ ¼ 0.4696 rðA11;A13Þ ¼ 0.1273
rðA11;A14Þ ¼ 0.1387 rðA11;A15Þ ¼ 0.1475 rðA11;A16Þ ¼ 0.0934 rðA11;A17Þ ¼ 0.1253 rðA11;A18Þ ¼ 0.1019
rðA11;A19Þ ¼ 0.1284 rðA11;A20Þ ¼ 0.0234 rðA11;A21Þ ¼ 0.0466 rðA12;A13Þ ¼ 0.1648 rðA12;A14Þ ¼ 0.1795
rðA12;A15Þ ¼ 0.1908 rðA12;A16Þ ¼ 0.1209 rðA12;A17Þ ¼ 0.1622 rðA12;A18Þ ¼ 0.1319 rðA12;A19Þ ¼ 0.1662
rðA12;A20Þ ¼ 0.0303 rðA12;A21Þ ¼ 0.0602 rðA13;A14Þ ¼ 0.5699 rðA13;A15Þ ¼ 0.6117 rðA13;A16Þ ¼ 0.1127
rðA13;A17Þ ¼ 0.1512 rðA13;A18Þ ¼ 0.1229 rðA13;A19Þ ¼ 0.1548 rðA13;A20Þ ¼ 0.0282 rðA13;A21Þ ¼ 0.0561
rðA14;A15Þ ¼ 0.6667 rðA14;A16Þ ¼ 0.1228 rðA14;A17Þ ¼ 0.1647 rðA14;A18Þ ¼ 0.1339 rðA14;A19Þ ¼ 0.1687
rðA14;A20Þ ¼ 0.0307 rðA14;A21Þ ¼ 0.0612 rðA15;A16Þ ¼ 0.1305 rðA15;A17Þ ¼ 0.1750 rðA15;A18Þ ¼ 0.1423
rðA15;A19Þ ¼ 0.1793 rðA15;A20Þ ¼ 0.0327 rðA15;A21Þ ¼ 0.0650 rðA16;A17Þ ¼ 0.4750 rðA16;A18Þ ¼ 0.0901
rðA16;A19Þ ¼ 0.1136 rðA16;A20Þ ¼ 0.0207 rðA16;A21Þ ¼ 0.0412 rðA17;A18Þ ¼ 0.1209 rðA17;A19Þ ¼ 0.1524
rðA17;A20Þ ¼ 0.0278 rðA17;A21Þ ¼ 0.0553 rðA18;A19Þ ¼ 0.5224 rðA18;A20Þ ¼ 0.0226 rðA18;A21Þ ¼ 0.0449
rðA19;A20Þ ¼ 0.0284 rðA19;A21Þ ¼ 0.0566 rðA20;A21Þ ¼ 0.1412 rðA24;A25Þ ¼ 0.0834

rðB1;B2Þ ¼ 0.9946 rðB1;B3Þ ¼ 0.9937 rðB1;B4Þ ¼ 0.9877 rðB1;B5Þ ¼ 0.6140 rðB1;B6Þ ¼ 0.6124
rðB1;B17Þ ¼ 0.9700 rðB1;B18Þ ¼ 0.9653 rðB1;B19Þ ¼ 0.9575 rðB1;B20Þ ¼ 0.5644 rðB2;B3Þ ¼ 0.9937
rðB2;B4Þ ¼ 0.9877 rðB2;B5Þ ¼ 0.6140 rðB2;B6Þ ¼ 0.6124 rðB2;B17Þ ¼ 0.9653 rðB2;B18Þ ¼ 0.9700
rðB2;B19Þ ¼ 0.9575 rðB2;B20Þ ¼ 0.5644 rðB3;B4Þ ¼ 0.9869 rðB3;B5Þ ¼ 0.6135 rðB3;B6Þ ¼ 0.6119
rðB3;B17Þ ¼ 0.9645 rðB3;B18Þ ¼ 0.9645 rðB3;B19Þ ¼ 0.9567 rðB3;B20Þ ¼ 0.5640 rðB4;B5Þ ¼ 0.6097
rðB4;B6Þ ¼ 0.6082 rðB4;B17Þ ¼ 0.9586 rðB4;B18Þ ¼ 0.9586 rðB4;B19Þ ¼ 0.9704 rðB4;B20Þ ¼ 0.5605
rðB5;B6Þ ¼ 0.3781 rðB5;B17Þ ¼ 0.5959 rðB5;B18Þ ¼ 0.5959 rðB5;B19Þ ¼ 0.5911 rðB5;B20Þ ¼ 0.3484
rðB6;B17Þ ¼ 0.5944 rðB6;B18Þ ¼ 0.5944 rðB6;B19Þ ¼ 0.5896 rðB6;B20Þ ¼ 0.9884 rðB7;B8Þ ¼ 0.0001
rðB9;B10Þ ¼ 0.0001 rðB11;B12Þ ¼ 0.6741 rðB11;B21Þ ¼ 0.9428 rðB11;B22Þ ¼ 0.4803 rðB12;B21Þ ¼ 0.4782

rðB12;B22Þ ¼ 0.9428 rðB13;B14Þ ¼ 0.2061 rðB13;B15Þ ¼ 0.2391 rðB13;B16Þ ¼ 0.2421 rðB13;B23Þ ¼ 0.9738
rðB13;B24Þ ¼ 0.1331 rðB13;B25Þ ¼ 0.1352 rðB14;B15Þ ¼ 0.2225 rðB14;B16Þ ¼ 0.2253 rðB14;B23Þ ¼ 0.1128
rðB14;B24Þ ¼ 0.1238 rðB14;B25Þ ¼ 0.1258 rðB15;B16Þ ¼ 0.2614 rðB15;B23Þ ¼ 0.1309 rðB15;B24Þ ¼ 0.9698
rðB15;B25Þ ¼ 0.1459 rðB16;B23Þ ¼ 0.1325 rðB16;B24Þ ¼ 0.1455 rðB16;B25Þ ¼ 0.9692 rðB17; B18Þ ¼ 0.9955
rðB17;B19Þ ¼ 0.9875 rðB17;B20Þ ¼ 0.5821 rðB18;B19Þ ¼ 0.9874 rðB18;B20Þ ¼ 0.5821 rðB19;B20Þ ¼ 0.5774
rðB21;B22Þ ¼ 0.3407 rðB23;B24Þ ¼ 0.0729 rðB23;B25Þ ¼ 0.0740 rðB24;B25Þ ¼ 0.0812
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discrepancy of h × 9 kHz. More importantly, the two tran-
sitions shift in opposite directions. In fact, by constructing the
hyperfine and fine-structure centroid energies from the mea-
surements the shifts cancel to a large extent. This led to the
final MPQ result for the 2S1=2 − 4P transition energy with
uðΔE=hÞ ¼ 2.3 kHz and a relative uncertainty of 3.7 × 10−12.
In addition to the quantum interference corrections, Beyer
et al. (2017) investigated 13 other systematic shifts and
corrections. The first-order Doppler shift is negligible, but
its h × 2.1 kHz uncertainty is by far the largest contributor to
the final uncertainty.

2. Measurement of the hydrogen two-photon 1S − 3S transition

The hydrogen 1S − 3S transition energy was measured by
Yost et al. (2016) at the MPQ and Fleurbaey et al. (2018) at the
LKB. These new data are items A8 and A23 in Table X,
respectively. The measurement uncertainty of the LKB group
is significantly smaller than that obtained at the MPQ and,
hence, we only describe details of the LKB experimental setup.
The researchers at the LKB used two-photon spectroscopy.

In this technique, the first-order Doppler shift is eliminated by

having room-temperature atoms simultaneously absorb pho-
tons from counter-propagating laser beams. The measured
transition energy has a five times smaller uncertainty than two
older measurements of the same transition energy. The latter
are listed as items A8 and A22 in Table X. Fleurbaey (2017)
and Thomas et al. (2019) give more information about the
LKB measurement. A history of Doppler-free spectroscopy is
given by Biraben (2019).
The development of a continuous-wave laser source at

205 nm for the two-photon excitation by Galtier et al. (2015)
contributed significantly to the fivefold uncertainty reduction
by improving the signal-to-noise ratio compared to previous
LKB experiments with a chopped laser source. The frequency
of the 205 nm laser was determined with the help of a transfer
laser, several Fabry-Perot cavities, and a femtosecond
frequency comb whose repetition rate was referenced to a
Cs-fountain frequency standard.
The laser frequency was scanned to excite the

1S1=2ðf ¼ 1Þ − 3S1=2ðf ¼ 1Þ transition and the resonance
was detected from the 656 nm radiation emitted by the
atoms when they decay from the 3S to the 2P level. The
well-known 1S and 3S hyperfine splittings were used to obtain

TABLE X. Summary of measured transition energies ΔEXði − i0Þ between states i and i0 for electronic hydrogen (X ¼ H) and electronic
deuterium (X ¼ D) considered as input data for the determination of the Rydberg constant R∞. The label in the first column is used in Table IX
to list correlation coefficients among these data and in Table XXIII for observational equations. Columns two and three give the reference and an
abbreviation of the name of the laboratory in which the experiment has been performed. An extensive list of abbreviations is found at the end of
this report.

Reported value Rel. stand.
Reference Lab. Energy interval(s) ΔE=h (kHz) uncert. ur

A1 Weitz et al. (1995) MPQ ΔEHð2S1=2−4S1=2Þ−1
4
ΔEHð1S1=2−2S1=2Þ 4 797 338(10) 2.1 × 10−6

A2 ΔEHð2S1=2−4D5=2Þ−1
4
ΔEHð1S1=2−2S1=2Þ 6 490 144(24) 3.7 × 10−6

A3 ΔEDð2S1=2−4S1=2Þ−1
4
ΔEDð1S1=2−2S1=2Þ 4 801 693(20) 4.2 × 10−6

A4 ΔEDð2S1=2−4D5=2Þ−1
4
ΔEDð1S1=2−2S1=2Þ 6 494 841(41) 6.3 × 10−6

A5 Parthey et al. (2010) MPQ ΔEDð1S1=2−2S1=2Þ−ΔEHð1S1=2−2S1=2Þ 670 994 334.606(15) 2.2 × 10−11

A6 Parthey et al. (2011) MPQ ΔEHð1S1=2 − 2S1=2Þ 2 466 061 413 187.035(10) 4.2 × 10−15

A7 Matveev et al. (2013) MPQ ΔEHð1S1=2 − 2S1=2Þ 2 466 061 413 187.018(11) 4.4 × 10−15

A8 Yost et al. (2016) MPQ ΔEHð1S1=2 − 3S1=2Þ 2 922 743 278 659(17) 5.8 × 10−12

A9 Beyer et al. (2017) MPQ ΔEHð2S1=2 − 4PÞ 616 520 931 626.8(2.3) 3.7 × 10−12

A10 de Beauvoir et al. (1997) LKB/ ΔEHð2S1=2 − 8S1=2Þ 770 649 350 012.0(8.6) 1.1 × 10−11

A11 SYRTE ΔEHð2S1=2 − 8D3=2Þ 770 649 504 450.0(8.3) 1.1 × 10−11

A12 ΔEHð2S1=2 − 8D5=2Þ 770 649 561 584.2(6.4) 8.3 × 10−12

A13 ΔEDð2S1=2 − 8S1=2Þ 770 859 041 245.7(6.9) 8.9 × 10−12

A14 ΔEDð2S1=2 − 8D3=2Þ 770 859 195 701.8(6.3) 8.2 × 10−12

A15 ΔEDð2S1=2 − 8D5=2Þ 770 859 252 849.5(5.9) 7.7 × 10−12

A16 Schwob et al. (1999) LKB/ ΔEHð2S1=2 − 12D3=2Þ 799 191 710 472.7(9.4) 1.2 × 10−11

A17 SYRTE ΔEHð2S1=2 − 12D5=2Þ 799 191 727 403.7(7.0) 8.7 × 10−12

A18 ΔEDð2S1=2 − 12D3=2Þ 799 409 168 038.0(8.6) 1.1 × 10−11

A19 ΔEDð2S1=2 − 12D5=2Þ 799 409 184 966.8(6.8) 8.5 × 10−12

A20 Bourzeix et al. (1996) LKB ΔEHð2S1=2−6S1=2Þ− 1
4
ΔEHð1S1=2−3S1=2Þ 4 197 604(21) 4.9 × 10−6

A21 ΔEHð2S1=2−6D5=2Þ− 1
4
ΔEHð1S1=2−3S1=2Þ 4 699 099(10) 2.2 × 10−6

A22 Arnoult et al. (2010) LKB ΔEHð1S1=2 − 3S1=2Þ 2 922 743 278 678(13) 4.4 × 10−12

A23 Fleurbaey et al. (2018) LKB ΔEHð1S1=2 − 3S1=2Þ 2 922 743 278 671.5(2.6) 8.9 × 10−13

A24 Berkeland, Hinds, and Boshier (1995) Yale ΔEHð2S1=2−4P1=2Þ− 1
4
ΔEHð1S1=2−2S1=2Þ 4 664 269(15) 3.2 × 10−6

A25 ΔEHð2S1=2−4P3=2Þ− 1
4
ΔEHð1S1=2−2S1=2Þ 6 035 373(10) 1.7 × 10−6

A26 Hagley and Pipkin (1994) Harvard ΔEHð2S1=2 − 2P3=2Þ 9 911 200(12) 1.2 × 10−6

A27 Newton, Andrews, and Unsworth (1979) Sussex ΔEHð2P1=2 − 2S1=2Þ 1 057 862(20) 1.9 × 10−5

A28 Lundeen and Pipkin (1981) Harvard ΔEHð2P1=2 − 2S1=2Þ 1 057 845.0(9.0) 8.5 × 10−6

A29 Bezginov et al. (2019) York ΔEHð2P1=2 − 2S1=2Þ 1 057 829.8(3.2) 3.0 × 10−6
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the final transition energy between the hyperfine centroids
with uðΔE=hÞ ¼ 2.6 kHz and ur ¼ 8.9 × 10−13.
The distribution of velocities of the atoms in the room-

temperature hydrogen beam led to a second-order Doppler
shift of roughly −140 kHz, or 500 parts in 1013, and was the
largest systematic effect in the experiment. To account for this
shift, the velocity distribution of the hydrogen atoms was
mapped out by applying a small magnetic flux density B
perpendicular to the hydrogen beam. In addition to Zeeman

shifts, the flux density leads to Stark shifts of 3S hyperfine
states by mixing with the nearby 3P1=2 level via the motional
electric field perceived by the atoms. Both this motional Stark
shift and the second-order Doppler shift have a quadratic
dependence on velocity. Then the LKB researchers fit reso-
nance spectra obtained at different B to a line-shape model
averaged over a modified Maxwellian velocity distribution of
an effusive beam. The fit gives the temperature of the H beam,
distortion parameters from a Maxwellian distribution, and a
line position with the second-order Doppler shift removed.
Finally, the observed line position was corrected for light

shifts due to the finite 205 nm laser intensity and pressure
shifts due to elastic collisions with background hydrogen
molecules. Light shifts increase the apparent transition energy
by up to h × 10 kHz depending on the laser intensity in the
data runs, while pressure shifts decrease this energy by
slightly less than h × 1 kHz=ð10−5 hPaÞ. Pressures up to
20 × 10−5 hPa were used in the experiments. Quantum inter-
ference effects, mainly from the 3D state, are small for the
1S − 3S transition and led to a correction of h × 0.6ð2Þ kHz.

3. Measurement of the hydrogen 2S− 2P Lamb shift

The hyperfine-resolved hydrogen 2S1=2ðf¼0Þ−2P1=2 ×
ðf¼1Þ transition energy or Lamb shift was measured by
Bezginov et al. (2019) at York University to help resolve the
proton-radius puzzle. This new datum is item A29 in Table X.
The Dirac equation predicts that the 2S1=2 and 2P1=2 energy
levels in hydrogen are degenerate, but because of vacuum
fluctuations and vacuum polarization, the 2S1=2 level lies
h × 1058 MHz above the 2P1=2 level and h × 9911 MHz
below the 2P3=2 level. In fact, historically the discovery of
the Lamb shift led to the development of QED. Previous
determinations of the Lamb shift are items A27 and A28 in
Table X. A determination of the 2S1=2 − 2P3=2 transition
energy is given as item A26.
The York researchers had to overcome the constraints that

arise from the 1.6 ns natural lifetime of the 2P1=2 state and the
minimal dimensions of the ≈1 GHz microwave cavities of
several centimeters. They solved this by preparing fast mono-
energetic beams of 2S1=2ðf ¼ 0Þ hydrogen atoms with veloc-
ities up to 0.32 cm=ns or 1% of the speed of light in vacuum.
This beam was obtained by passing protons with a kinetic
energy up to 55 keV through a H2 molecular gas and by
rejecting H atoms in unwanted states, especially those in the
three metastable 2S1=2ðf ¼ 1Þ Zeeman states.
The York researchers then used a modified version of the

separated oscillatory field method to measure the Lamb shift,
as described by Vutha and Hessels (2015). In this design, the
frequencies of the microwave radiation applied to the two
spatially separated field regions have a fixed small frequency
difference and only the carrier frequency is scanned. Crucial
for the effectiveness of the method is that the researchers could
alternate between whether the atoms encounter the lower or
higher frequency radiation first. This change occurred every
few seconds. Also, part of the apparatus could be physically
rotated by 180°, done about once per hour, so that the atoms
encounter the separate oscillatory fields in reverse order.
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FIG. 4. Experimental hydrogen and deuterium transition ener-
gies and differences of transition energies (yellow-filled red
circles with red error bars) used as input data in the 2018 least-
squares adjustment. For all data, the 2018 adjusted value of the
transition energy has been subtracted. Data new to this adjustment
have been indicated with the abbreviation of the name of the
laboratory and year of publication in parentheses. An extensive
list of abbreviations is found at the end of this report. Panel (a)
shows data for the 1S − 2S transition with one-standard-deviation
uncertainties on the order of tens of h × Hz. Panel (b) shows the
remaining input data with uncertainties on the scale of tens of
h × kHz. Labels on the left-hand side of the figure group data
belonging to the same class of transitions, i.e., nl − n0l0 tran-
sitions. Input data without such label correspond to data that
depend on (weighted) differences of four energy levels. Finally,
the yellow-filled black circles with black error bars are the fitted
values and their uncertainties. In the figure, the uncertainties of the
input data have not been multiplied by 1.6, the expansion factor in
this adjustment to make the H and D spectroscopic and muonic
Lamb-shift data consistent. Fitted values are for the data when
multiplied by this factor. Blue and black labels An on the right-
hand side of the figure correspond to hydrogen and deuterium
entries in Table X, respectively.
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Data from these four cases were used to eliminate shifts due
to imperfections in state preparation and microwave cavities.
The frequency difference of the radiation in the two field
regions leads to a time-dependent signal of 2S1=2 population
that oscillates at the difference frequency with a phase offset
that is proportional to the difference of the applied carrier
frequency and the frequency equivalent of the Lamb shift. The
sign of the slope depends on whether the atoms encounter the
lower or higher frequency radiation first. The number of
remaining H atoms in the 2S1=2 state at the end of the beam
line was measured by applying an electric field in a detection
zone and collecting the 121.6 nm Lyman-α photon emitted by
the atoms.
Data were obtained with 18 different combinations of beam

velocity, strength of the 910 MHz microwave field, and
distance between the separated field regions. No dependence
on these parameters was observed.
The final h × 3.2 kHz uncertainty for the 2S1=2ðf ¼ 0Þ −

2P1=2ðf ¼ 1Þ transition energy, which corresponds to
ur ¼ 3.6 × 10−6, arises from an h × 1.4 kHz statistical uncer-
tainty and uncertainties from several systematic effects: h ×
2.3 kHz from the AC Stark shift, h × 1.5 kHz from the
measurement of phase, and h × 1.0 kHz from the second-order
Doppler shift. Quantum interference from hyperfine states with
n ≥ 3 had no discernible effect on the measurement.
Marsman et al. (2018) reevaluated the experiment of

Lundeen and Pipkin (1981, 1986), input datum A28 in
Table X. They suggested that the transition energy should
be reduced by h × 6 kHz and the uncertainty increased from
h × 9 kHz to h × 20 kHz. For the 2018 CODATA adjustment,
the results of Lundeen and Pipkin (1981, 1986) have not been
modified.

VIII. ELECTRON MAGNETIC-MOMENT ANOMALY

The interaction of the magnetic moment of a charged lepton
l in a magnetic flux density (or magnetic field) B is described
by the Hamiltonian H ¼ −μl · B, with

μl ¼ gl
e

2ml
s; ð44Þ

where l ¼ e�, μ�, or τ�, gl is the g-factor, with the convention
that it has the same sign as the charge of the particle, e is the
positive elementary charge, ml is the lepton mass, and s is its
spin. Since the spin has projection eigenvalues of sz ¼ �ℏ=2,
the magnitude of a magnetic moment is

μl ¼ gl
2

eℏ
2ml

: ð45Þ

The lepton magnetic-moment anomaly al is defined by the
relationship

jglj≡ 2ð1þ alÞ; ð46Þ

based on the Dirac g-value of−2 andþ2 for the negatively and
positively charged lepton l, respectively.
The Bohr magneton is defined as

μB ¼ eℏ
2me

; ð47Þ

and the theoretical expression for the anomaly of the electron
aeðthÞ is

aeðthÞ ¼ aeðQEDÞ þ aeðweakÞ þ aeðhadÞ; ð48Þ

where terms denoted by “QED,” “weak,” and “had” account
for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, strong
interaction) contributions, respectively.
The QED contribution may be written as

aeðQEDÞ ¼
X∞
n¼1

Cð2nÞ
e

�
α

π

�
n
; ð49Þ

where the index n corresponds to contributions with n virtual
photons and

Cð2nÞ
e ¼ Að2nÞ

1 þ Að2nÞ
2 ðxeμÞ þ Að2nÞ

2 ðxeτÞ þ � � � ð50Þ

with mass-independent coefficients Að2nÞ
1 and functions

Að2nÞ
2 ðxÞ evaluated at mass ratio x ¼ xeX ≡me=mX ≪ 1 for

lepton X ¼ μ or τ. For n ¼ 1, we have

Að2Þ
1 ¼ 1=2; ð51Þ

and function Að2Þ
2 ðxÞ ¼ 0, while for n > 1 coefficients Að2nÞ

1

include vacuum-polarization corrections with virtual electron/
positron pairs. In fact,

Að4Þ
1 ¼ −0.328 478 965 579 193…; ð52Þ

Að6Þ
1 ¼ 1.181 241 456 587…; ð53Þ

Að8Þ
1 ¼ −1.912 245 764…; ð54Þ

Að10Þ
1 ¼ 6.675ð192Þ: ð55Þ

The functions Að2nÞ
2 ðxÞ for n > 1 are vacuum-polarization

corrections due to heavier leptons. For x → 0, we have

Að4Þ
2 ðxÞ ¼ x2=45þOðx4Þ and Að6Þ

2 ðxÞ ¼ x2ðb0 þ b1 ln xÞ þ
Oðx4Þ with b0 ¼ 0.593274… and b1 ¼ 23=135 (Laporta,

TABLE XI. Twenty-five of the 75 adjusted constants in the 2018
CODATA least-squares minimization. These variables account for
missing contributions to the theoretical description of the electronic
hydrogen (H) and deuterium (D) energy levels. Their input data are
given in Table VIII.

Atom Level nlj

H δH 1S1=2, 2S1=2, 3S1=2, 4S1=2, 6S1=2, 8S1=2,
2P1=2, 2P3=2, 4P1=2, 4P3=2,
4D5=2, 6D5=2, 8D3=2, 8D5=2, 12D3=2, 12D5=2

D δD 1S1=2, 2S1=2, 4S1=2, 8S1=2,
4D5=2, 8D3=2, 8D5=2, 12D3=2, 12D5=2
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1993; Laporta and Remiddi, 1993). The Oðx4Þ contributions
are known and included in the calculations but not reproduced

here. The functions Að8Þ
2 ðxÞ and Að10Þ

2 ðxÞ are also Oðx2Þ for
small x, but not reproduced here (Kurz et al., 2014a; Aoyama
et al., 2015). Currently, terms with n > 5 and vacuum-
polarization corrections that depend on two lepton mass ratios
can be neglected.
Table XII summarizes the relevant QED coefficients and

summed Cð2nÞ
e with their one-standard-deviation uncertainties

where appropriate as used in the 2018 CODATA adjustment.
Additional references to the original literature can be found in
descriptions of previous CODATA adjustments. It is worth

noting that since 2014 the coefficient Að8Þ
1 has been evaluated

by Laporta (2017), while the value for Að10Þ
2 has been updated

by Aoyama, Kinoshita, and Nio (2018).
Recently, the value for Að10Þ

2 has been refined by Aoyama,
Kinoshita, and Nio (2019), although Volkov (2019) found a

value for Að10Þ
2 , absent lepton loop contributions, that is

significantly discrepant with that based on results in
Aoyama, Kinoshita, and Nio (2018, 2019). Both Aoyama,
Kinoshita, and Nio (2019) and Volkov (2019) were published
after our closing date.
The electroweak contribution is

aeðweakÞ ¼ 0.030 53ð23Þ × 10−12 ð56Þ

and is calculated as discussed in the 1998 CODATA
adjustment, but with the 2018 values of the Fermi coupling
constant GF=ðℏcÞ3 and the weak mixing angle θW (Tanabashi
et al., 2018).
Jegerlehner (2019) has provided updates to hadronic

contributions to the electron anomaly. Currently, four such
contributions have been considered. They are

aeðhadÞ ¼ aLO;VPe ðhadÞ þ aNLO;VPe ðhadÞ þ aNNLO;VPe ðhadÞ
þ aLLe ðhadÞ ð57Þ

corresponding to leading-order (LO), next-to-leading-order
(NLO), and next-to-next-to-leading-order (NNLO) hadronic
vacuum-polarization corrections and a hadronic light-by-light
(LL) scattering term, respectively. Contributions are deter-
mined from analyzing experimental cross sections for elec-
tron-positron annihilation into hadrons and tau-lepton-decay
data. The values in the 2018 adjustment are

aLO;VPe ðhadÞ ¼ 1.849ð11Þ × 10−12;

aNLO;VPe ðhadÞ ¼ −0.2213ð12Þ × 10−12;

aNNLO;VPe ðhadÞ ¼ 0.028 00ð20Þ × 10−12;

aLLe ðhadÞ ¼ 0.0370ð50Þ × 10−12 ð58Þ

leading to the total hadronic contribution

aeðhadÞ ¼ 1.693ð12Þ × 10−12: ð59Þ

A first-principle lattice quantum chromodynamics (QCD)
evaluation of the leading-order hadronic correction aLO;VPe ðhadÞ
to the electron anomaly was published in 2018 (Borsanyi et al.,
2018). The value is

aLO;VPe ðhadÞ ¼ 1.893ð26Þð56Þ × 10−12; ð60Þ

where the first and secondnumbers in parentheses correspond to
the statistical and systematic uncertainty, respectively. The
systematic uncertainty is dominated by finite-volume artifacts.
The combined uncertainty is six times larger than that obtained
by analyzing electron-positron scattering data.
Figure 5 shows a graphical representation of 14 contribu-

tions to the electron anomaly. The QED corrections decrease
roughly exponentially in size with order n for both mass-
independent and -dependent contributions. Contributions
from virtual loops containing τ leptons are mostly negligible.
The theoretical uncertainty of the electron anomaly (apart

from uncertainty in the fine-structure constant) is dominated
by two contributions: the mass-independent n ¼ 5 QED
correction and the hadronic contribution. In fact, its value is

u½aeðthÞ� ¼ 0.018 × 10−12 ¼ 1.5 × 10−11ae; ð61Þ

and is shown in Fig. 5 as well.
This theoretical uncertainty is significantly smaller than the

uncertainty 2.4 × 10−10ae of the best by far experimental
value for the electron anomaly from Hanneke, Fogwell, and
Gabrielse (2008). Consequently, the relative uncertainty of
the fine-structure constant based on only this experimental
input datum would be the same as that for this experiment.
Atom-recoil experiments, discussed in Sec. X, form a second
competitive means to determine α.
For the least-squares adjustment, we use the observational

equations

TABLE XII. Coefficients for the QED contributions to the electron anomaly. The coefficients Að2nÞ
1 and functions Að2nÞ

2 ðxÞ, evaluated at mass
ratios xeμ ¼ me=mμ and xeτ ¼ me=mτ for the muon and tau lepton, respectively; summed values Cð2nÞ

e , based on values for lepton mass ratios
from the 2018 CODATA adjustment, are listed as accurately as needed for the tests described in this article. Missing values indicate that their
contribution to the electron anomaly is negligible.

n Að2nÞ
1 Að2nÞ

2 ðxeμÞ Að2nÞ
2 ðxeτÞ Cð2nÞ

e

1 1=2 0 0 0.5
2 −0.328 478 965 579 193… 5.197 386 74ð23Þ × 10−7 1.837 90ð25Þ × 10−9 −0.328 478 444 00
3 1.181 241 456 587… −7.373 941 69ð24Þ × 10−6 −6.582 73ð79Þ × 10−8 1.181 234 017
4 −1.912 245 764… 9.161 970 80ð33Þ × 10−4 7.428 93ð88Þ × 10−6 −1.911 322 138 91ð88Þ
5 6.675(192) −0.003 82ð39Þ 6.67(19)
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aeðexpÞ ≐ aeðthÞ þ δthðeÞ ð62Þ

and

δe ≐ δthðeÞ ð63Þ

with additive adjusted constant δthðeÞ. Input datum aeðexpÞ is
from Hanneke, Fogwell, and Gabrielse (2008), while input
datum δe ¼ 0 with u½δe� ¼ 0.018 × 10−12 accounts for the
uncertainty of the theoretical expression. The input data are
entries D1 and D2 in Table XXI. Relevant observational
equations are found in Table XXVI.

IX. RELATIVE ATOMIC MASSES

In this section, we discuss the input data that determine the
relative atomic masses of various nuclei and atoms relevant to
the adjustment. Specifically, we focus on light nuclei, i.e.,
neutron n, proton p, deuteron d, triton t, helion h, and the alpha
particle α. These are the nuclei of hydrogen 1H, deuterium 2H,
tritium 3H, helium-3 3He, and helium-4 4He, respectively. This
section also summarizes corresponding input data for the
atoms 12C, 28Si, 87Rb, and 133Cs as they are relevant for the
determination of the mass of the electron and the fine-structure
constant discussed in Sec. VI. The input data for the mass of
the muon are discussed in Sec. XVII.
Table XIII gives the relative atomic masses of the neutron

and six neutral atoms that are used as input data in the 2018
CODATA adjustment. The carbon-12 relative atomic mass is
by definition simply the number 12. The remaining values
have been taken from the 2016 Atomic Mass Evaluation
(Huang et al., 2017; Wang et al., 2017). Task Group and
Atomic-Mass-Data-Center (AMDC) member M. Wang

supplied extra digits to reduce rounding errors. Correlation
coefficients with rðXi; XjÞ > 0.0001 among these relative
atomic masses are given in Table XIV. These input data are
also given as items D5, D6, D11, and D18–D20 in Table XXI.
The relative atomic masses of n, 87Rb, and 133Cs are

adjusted constants and their observational equations are
simply ArðXÞ ≐ ArðXÞ. On the other hand, we find it more
convenient to use the relative atomic masses of the proton p,
the alpha particle α, and the hydrogenic 28Si13þ as adjusted
constants, rather than those of neutral 1H, 4He, and 28Si. Since
the mass of an atom or atomic ion is the sum of the nuclear
mass and the masses of its electrons minus the mass equivalent
of the binding energy of the electrons, the observational
equation for the relative atomic mass of a neutral atom X in
terms of that of ion Xnþ in charge state n ¼ 1; 2;… is

ArðXÞ ≐ ArðXnþÞ þ nArðeÞ −
ΔEBðXnþÞ

muc2
; ð64Þ

where ArðeÞ is the relative atomic mass of the electron
and ΔEBðXnþÞ > 0 is the binding or removal energy
needed to remove n electrons from the neutral atom.
This binding energy is the sum of the electron ionization
energies EIðXiþÞ of ion Xiþ. That is,

ΔEBðXnþÞ ¼
Xn−1
i¼0

EIðXiþÞ: ð65Þ

For a bare nucleus n ¼ Z, while for a neutral atom n ¼ 0 and
ΔEBðX0þÞ ¼ 0.With our definition of observational equations,
the quantities ArðeÞ and ΔEBðXnþÞ are adjusted constants.
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FIG. 5. Fourteen fractional contributions to the theoretical
anomaly of the electron jδaej=aeðthÞ. QED contributions are

due to the mass-independent Að2nÞ
1 (yellow-filled black circles), to

the muon-dependent Að2nÞ
2 ðxeμÞ (yellow-filled red circles), and to

the tau-dependent Að2nÞ
2 ðxeτÞ (yellow-filled blue circles) correc-

tions, respectively. Weak and hadronic corrections are also
shown. The horizontal orange line shows the theoretical relative
uncertainty of aeðthÞ. The 2018 CODATA values for the fine-
structure constant and lepton mass ratios are used here.

TABLE XIII. Relative atomic masses used as input data in the 2018
CODATA adjustment and taken from the 2016 Atomic-Mass-Data-
Center (AMDC) mass evaluation (Huang et al., 2017; Wang et al.,
2017). Correlations among these data are given in Table XIV.

Relative atomic Relative standard
Atom massa ArðXÞ uncertainty ur

n 1.008 664 915 82(49) 4.9 × 10−10

1H 1.007 825 032 241(94) 9.3 × 10−11

4He 4.002 603 254 130(63) 1.6 × 10−11

12C 12 exact
28Si 27.976 926 534 99(52) 1.9 × 10−11

87Rb 86.909 180 5312(65) 7.4 × 10−11

133Cs 132.905 451 9610(86) 6.5 × 10−11

aThe relative atomic mass ArðXÞ of particle X with mass mðXÞ
is defined by ArðXÞ ¼ mðXÞ=mu, where mu ¼ mð12CÞ=12 is the
atomic mass constant.

TABLE XIV. Correlation coefficients rðXi; XjÞ > 0.0001 among
the input data for the relative atomic masses ArðXÞ given in Table XIII
based on covariances from the 2016 AMDC mass evaluation
available in Supplementary files at http://amdc.impcas.ac.cn/web/
masseval.html or at https://www-nds.iaea.org/amdc.

rðn; 1HÞ ¼ −0.1340 rðn; 28SiÞ ¼ −0.0198
rðn; 87RbÞ ¼ −0.0070 rðn; 133CsÞ ¼ −0.0070
rð1H; 28SiÞ ¼ 0.1934 rð1H; 87RbÞ ¼ 0.0657

rð1H; 133CsÞ ¼ 0.0602 rð28Si; 87RbÞ ¼ 0.0495
rð28Si; 133CsÞ ¼ 0.0402 rð87Rb; 133CsÞ ¼ 0.1004
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In addition to the input data in Table XIII, we also use
measurements of four cyclotron frequency ratios as input data
to further constrain the relative atomic mass of the proton and
determine those of the remaining three light nuclei: the
deuteron, triton, and helion. These measurements rely on the
fact that ions Xnþ with charge ne in a homogeneous flux
density or magnetic field of strengthB undergo circular motion
with a cyclotron frequencyωcðXnþÞ ¼ neℏB=mðXnþÞ that can
be accurately measured. With the right experimental design,
ratios of cyclotron frequencies for ions Xnþ and Ypþ in the
same magnetic-field environment then satisfy

ωcðXnþÞ
ωcðYpþÞ ¼

nArðYpþÞ
pArðXnþÞ ð66Þ

independent of field strength. For ease of reference, the four
cyclotron frequency ratios are summarized in Table XXI
as items D14–D17. Observational equations are given in
Table XXVI.
The first of these measurements is relevant for the deter-

mination of the relative atomic mass of the proton. In 2017,
the ratio of cyclotron frequencies of the proton and the
12C6þ ion, ωcð12C6þÞ=ωcðpÞ, was measured at a Max-
Planck Institute in Heidelberg, Germany (MPIK) (Heiße et al.,
2017). Their ratio has a relative uncertainty of 3.3 × 10−11,
mostly limited by residual magnetic-field inhomogeneities in
the multi-zone cryogenic Penning trap. Optimized for meas-
uring the cyclotron frequencies of light ions, the trap has three
separate but connected areas that are coaxial with an applied
magnetic field. A single 12C6þ ion and a proton are then
shuttled in and out of the central measurement trap.
Heiße et al. (2017) recognized that their value of ArðpÞ does

not agree with that implied by Arð1HÞ in Table XIII. As a
check on their experiment, they carried out measurements on
other ions but found results consistent with literature values.
Figure 6 gives a graphical representation of the two discrepant
input data as well as our fitted values for these data. Our
predicted value for Arð1HÞ is significantly smaller than that
from the 2016 Atomic Mass Evaluation. For our 2018
CODATA adjustment, we have applied an expansion factor
of 1.7 to the uncertainties of these two input data, also shown
in the figure, in order to obtain a consistent least-squares
adjustment.
The 2014 cyclotron-frequency-ratio measurement for the

deuteron d and 12C6þ essentially determines ArðdÞ. Reported
by Zafonte and Van Dyck (2015) and identified with UWash-
15, the result was already discussed in the 2014 CODATA
adjustment. The measurement has a relative uncertainty of
2.0 × 10−11 and agrees with a preliminary value (Van Dyck
et al., 2006) based on only 30% of the data. The 2016 AMDC
evaluation of Arð2HÞ is not included in our CODATA adjust-
ment, as it was based on this preliminary determination.
The final two cyclotron-frequency-ratio measurements

determine the triton and helion relative atomic masses, ArðtÞ
andArðhÞ, respectively. Thesemasses are primarily determined
by the ratiosωcðtÞ=ωcð3HeþÞ andωcðHDþÞ=ωcð3HeþÞ, both of
which were measured at Florida State University, Florida,
USA. The ratios have been reported byMyers et al. (2015) and
Hamzeloui et al. (2017), respectively. The former was already

discussed in the 2014CODATA adjustment. See also the recent
review by Myers (2019).
The quantity ωcðtÞ=ωcð3HeþÞ is not directly measured

by Myers et al. (2015), but determined from the quotient
of ratios ωcðHDþÞ=ωcð3HeþÞ and ωcðHDþÞ=ωcðtÞ. While
ur ¼ 4.8 × 10−11 for each of these directly measured ratios,
ur ¼ 2.4 × 10−11 for their quotient because of a cancellation
of several uncertainty components from systematic effects
common to both.
The 2016 AMDC evaluations of Arð3HÞ and Arð3HeÞ are not

included in this CODATA adjustment. They were primarily
determined by ωcðHDþÞ=ωcð3HeþÞ and ωcðHDþÞ=ωcðtÞ from
Myers et al. (2015). The former ratio is now superseded by
the twice as accurate corresponding value from Hamzeloui
et al. (2017).
Binding energies are most accurately tabulated in terms of

wave number equivalents ΔEBðXnþÞ=hc but are needed as
their relative atomic mass unit equivalents ΔEBðXnþÞ=muc2.
Given that the Rydberg energy hcR∞ ¼ α2mec2=2, the last
term in Eq. (64) is then rewritten as

ΔEBðXnþÞ
muc2

¼ α2ArðeÞ
2R∞

ΔEBðXnþÞ
hc

: ð67Þ

Binding energies for 1Hþ, 3Heþ, 4He2þ, 12C5þ, 12C6þ, and
28Si13þ are used in this CODATA adjustment. Their values are
determined or constructed from ionization energies in
Table XV taken from the 2018 NIST Atomic Spectra
Database (ASD) at https://doi.org/10.18434/T4W30F. The
relevant binding energies are listed in Table XXI as items
D8, D12, and D21-24. Corresponding observational equations
are given in Table XXVI.
The uncertainties of the ionization data are sufficiently

small that correlations among them or with any other data used
in the 2018 adjustment are inconsequential. Nevertheless, the
binding or removal energies of 12C5þ and 12C6þ are highly
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FIG. 6. Input data for the determination of the relative atomic
mass of the proton p. The input data (yellow-filled red circles with
red error bars) and fitted values (yellow-filled black circles with
black error bars) of the cyclotron frequency ratio of 12C6þ and p
and the relative atomic mass of the hydrogen atom Arð1HÞ are
shown. Error bars correspond to one-standard-deviation uncer-
tainties. Datum X is shifted by the fitted value hXi and
normalized by the standard uncertainty of the input datum. Thus,
fitted values shift to zero and input data become normalized
residuals. Dashed orange lines are the standard uncertainties of
the input data multiplied by the 1.7 expansion factor that ensures
a consistent fit.
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correlated with a correlation coefficient of 0.999 98, due to the
uncertainties in the common ionization energies at lower
stages of ionization. The observational equations for binding
energies are simply

ΔEBðXnþÞ=hc ≐ ΔEBðXnþÞ=hc; ð68Þ

thereby allowing all binding-energy uncertainties and cova-
riances to be properly taken into account.
A word on the relative atomic mass of the molecular ion

HDþ is in order. Its value helps determine the relative atomic
mass of the 3He nucleus. We take

ArðHDþÞ ¼ ArðpÞ þ ArðdÞ þ ArðeÞ −
ΔEIðHDþÞ

muc2
; ð69Þ

and have used the wave number equivalent of the ionization
energy of the HDþ ion, ΔEIðHDþÞ=hc, as an adjusted
constant whose value is constrained by the measurement or
input datum

ΔEIðHDþÞ=hc ¼ 13 122 468.415ð6Þ m−1 ð70Þ

from Liu et al. (2010) and Sprecher et al. (2010). This input
datum is item D25 in Table XXI.

X. ATOM-RECOIL MEASUREMENTS

Atom-recoil measurements with rubidium and cesium
atoms from the stimulated absorption and emission of photons
are relevant for the CODATA adjustment as they determine the
electron mass, the atomic mass constant, and the fine-structure
constant (Peters et al., 1997; Young, Kasevich, and Chu,
1997; Mohr and Taylor, 2000). This can be understood as
follows. First and foremost, recoil measurements determine
the massmðXÞ of a neutral atom X in kg using interferometers
with atoms in superpositions of momentum states and taking
advantage of the fact that photon energies can be precisely
measured. Equally precise photon momenta p follow from

their dispersion or energy-momentum relation E ¼ pc. In
practice, Bloch oscillations are used to transfer a large number
of photon momenta to the atoms in order to improve the
sensitivity of the measurement (Cladé, 2015; Estey et al.,
2015). Before the adoption of the revised SI on 20 May 2019,
these experiments only measured the ratio h=mðXÞ, since the
Planck constant h was not an exactly defined constant.
Second, atom-recoil measurements are a means to deter-

mine the atomic mass constant, mu ¼ mð12CÞ=12, and the
mass of the electron, me, in kg. This follows, as many relative
atomic masses ArðXÞ ¼ mðXÞ=mu of atoms X are well known.
For 87Rb and 133Cs, the relative atomic masses have a relative
uncertainty smaller than 1 × 10−10 from the 2016 recom-
mended values of the AMDC (see Table XIII). The relative
atomic mass of the electron can be determined even more
precisely with spin-precession and cyclotron-frequency-ratio
measurements on hydrogenic 12C5þ and 28Si13þ as discussed
in Sec. XI. We thus have

mu ¼ mðXÞ=ArðXÞ ð71Þ

and

me ¼
ArðeÞ
ArðXÞ

mðXÞ ð72Þ

from a measurement of the mass of atom X.
Finally, the fine-structure constant follows from the obser-

vation that the Rydberg constant R∞ ¼ α2mec=2h has a
relative standard uncertainty of 1.9 × 10−12 based on spec-
troscopy of atomic hydrogen discussed in Sec. VII. The
expression for R∞ can be rewritten as

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hcR∞

mðXÞc2
ArðXÞ
ArðeÞ

s
ð73Þ

and a value of α with a competitive uncertainty can be
obtained from a measurement of mðXÞ.
Two mðXÞ measurements, represented by values for

h=mðXÞ, are input data in the current least-squares adjustment:
A mass for 87Rb measured at the LKB, France by Bouchendira
et al. (2011) and a mass for 133Cs measured at the University of
California at Berkeley, USA by Parker et al. (2018). The
rubidium mass was already available for previous adjustments,
while this value for the cesium mass is a new input datum. The
results are items D3 and D4 in Table XXI and satisfy the
relevant observational equations in Table XXVI.
The values of α inferred from the two atom-recoil mea-

surements are shown in Fig. 2, together with that inferred from
an electron magnetic-moment anomaly ae measurement.
Their comparison provides a useful test of the QED-based
determination of ae and is discussed in Sec. IV.D.
The new University-of-California-at-Berkeley value of

mð133CsÞ has ur ¼ 4.0 × 10−10 and currently provides a value
of α with the smallest uncertainty. Thirteen systematic effects
were investigated and included in the uncertainty budget. In
parts in 1010, the net correction from systematic effects is
−91.6ð2.4Þ. The two largest systematic corrections by far are

TABLE XV. Ionization energies for 1H, 3H, 3He, 4He, 12C, and 28Si.
The full description of unit m−1 is cycles or periods per meter.
Covariances among the data in this table have not been included in
the adjustment. See text for explanation.

EI=hc (107 m−1) EI=hc (107 m−1)
1H 1.096 787 717 4307(10)
3H 1.097 185 4390(13)
3Heþ 4.388 891 936(3)
4He 1.983 106 6637(20) 4Heþ 4.389 088 785(2)
12C 0.908 203 480(90) 12Cþ 1.966 634(1)
12C2þ 3.862 410(20) 12C3þ 5.201 753(15)
12C4þ 31.624 233(2) 12C5þ 39.520 616 7(5)
28Si 0.657 4776(25) 28Siþ 1.318 381(3)
28Si2þ 2.701 393(7) 28Si3þ 3.640 931(6)
28Si4þ 13.450 7(3) 28Si5þ 16.556 90(40)
28Si6þ 19.887(4) 28Si7þ 24.4864(42)
28Si8þ 28.333(5) 28Si9þ 32.374(3)
28Si10þ 38.414(2) 28Si11þ 42.216 3(6)
28Si12þ 196.610 389(16) 28Si13þ 215.606 31(2)
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−35.8ð4Þ in parts in 1010 from acceleration gradients and
−52.0ð6Þ in parts in 1010 from wave front curvature and the
Gouy phase of their Gaussian laser beams. The relative
statistical uncertainty is 3.2 × 10−10. See also the review by
Yu et al. (2019).
Generalizations of the Gouy phase are of particular interest

in atom-recoil experiments. In efforts to improve their
rubidium apparatus, the researchers at LKB realized that
small-scale intensity fluctuations in laser beams at the atomic
positions lead to additional contributions to the Gouy phase
(Bade et al., 2018; Cladé et al., 2019). In fact, in the new
apparatus they expect to study this systematic effect in detail.
Cladé et al. (2019) also concluded that the 2011 evaluation
remains the most accurate determination of mð87RbÞ, unaf-
fected by generalizations of the Gouy phase. Acknowledging
the insights of Bade et al. (2018), Parker et al. (2018) at
Berkeley realized that their relevant laser propagates a con-
siderable distance before reaching the cesium atoms and
small-scale intensity fluctuations smooth out, thereby signifi-
cantly reducing the size of the effect.

XI. ATOMIC g-FACTORS IN HYDROGENIC
12C AND 28Si IONS

The most accurate value for the relative atomic mass of the
electron is obtained from measurements of the ratio of spin-
precession and cyclotron frequencies in hydrogenic carbon and
silicon and theoretical expressions for the g-factors of their
bound electron. See, for example, the recent analysis by
Zatorski et al. (2017). These measurements also play an
important role in determining the fine-structure constant using
atom-recoil experiments discussed in Sec. X.
For a hydrogenic ion X in its electronic ground state 1S1=2

and with a spinless nucleus, the Hamiltonian in an applied
magnetic flux density B is

H ¼ −geðXÞ
e

2me
J · B; ð74Þ

where J is the electron angular momentum and geðXÞ is the
bound-state g-factor for the electron. The electron angular
momentum projection is Jz ¼ �ℏ=2 along the direction of B,
so the energy splitting between the two levels is

ΔE ¼ jgeðXÞj
eℏ
2me

B; ð75Þ

and the spin-flip precession frequency is

ωs ¼
ΔE
ℏ

¼ jgðXÞj eB
2me

: ð76Þ

In the same flux density, the ion’s cyclotron frequency is

ωc ¼
qXB
mX

; ð77Þ

where qX ¼ ðZ − 1Þe, Z, and mX are its net charge, atomic
number, and mass, respectively. The frequency ratio ωs=ωc is
then independent of B and satisfies

ωs

ωc
¼ jgeðXÞj

2ðZ − 1Þ
mX

me
¼ jgeðXÞj

2ðZ − 1Þ
ArðXÞ
ArðeÞ

; ð78Þ

where ArðXÞ is the relative atomic mass of the ion.
We summarize the theoretical computations of the g-factor

in Sec. XI.A and describe the experimental input data and
observational equations in Secs. XI.B and XI.C.

A. Theory of the bound-electron g-factor

The bound-electron g-factor is given by

geðXÞ ¼ gD þ Δgrad þ Δgrec þ Δgns þ � � � ; ð79Þ

where the individual terms on the right-hand side are the Dirac
value, radiative corrections, recoil corrections, and nuclear-
size corrections, and the dots represent possible additional
corrections not already included.
The Dirac value is (Breit, 1928)

gD ¼ −
2

3

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðZαÞ2

q �

¼ −2
�
1 −

1

3
ðZαÞ2 − 1

12
ðZαÞ4 − 1

24
ðZαÞ6 þ � � �

�
; ð80Þ

where the only uncertainty is due to that in α.
The radiative correction is given by the series

Δgrad ¼
X∞
n¼1

Δgð2nÞ; ð81Þ

where

Δgð2nÞ ¼ −2Cð2nÞ
e ðZαÞ

�
α

π

�
n

ð82Þ

with coefficients Cð2nÞ
e ðxÞ that depend on x ¼ Zα.

The first or one-photon coefficient in the series has
self-energy (SE) and vacuum-polarization (VP) contributions,

i.e., Cð2Þ
e ðxÞ ¼ Cð2Þ

e;SEðxÞ þ Cð2Þ
e;VPðxÞ. The self-energy coeffi-

cient is (Faustov, 1970; Grotch, 1970; Close and Osborn,
1971; Pachucki, Jentschura, and Yerokhin, 2004; Pachucki
et al., 2005)

Cð2Þ
e;SEðxÞ ¼

1

2

�
1þ x2

6
þ x4

�
32

9
lnðx−2Þ

þ 247

216
−
8

9
ln k0 −

8

3
ln k3

�
þ x5RSEðxÞ

�
; ð83Þ

where

ln k0 ¼ 2.984 128 556; ð84Þ
ln k3 ¼ 3.272 806 545; ð85Þ
RSEð6αÞ ¼ 22.1660ð10Þ; ð86Þ
RSEð14αÞ ¼ 21.0005ð1Þ: ð87Þ
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Values for the remainder function RSEðxÞ for carbon and
silicon have been taken from Yerokhin and Harman (2017)
and correspond to an almost tenfold improvement over the
values used in the previous adjustment. It is worth noting that
Pachucki and Puchalski (2017) have derived that

RSEð0Þ ¼ π
�
89

16
þ 8

3
ln 2

�
: ð88Þ

Finally, we have

Cð2Þ
e;SEð6αÞ ¼ 0.500 183 607 131ð80Þ;

Cð2Þ
e;SEð14αÞ ¼ 0.501 312 638 14ð56Þ: ð89Þ

The lowest-order vacuum-polarization coefficient Cð2Þ
e;VPðxÞ

has a wave-function and a potential contribution, each of
which can be separated into a lowest-order Uehling-potential
contribution and a higher-order Wichmann-Kroll contribution.
The wave-function correction is (Beier, 2000; Beier et al.,
2000; Karshenboim, 2000; Karshenboim, Ivanov, and
Shabaev, 2001a, 2001b)

Cð2Þ
e;VPwfð6αÞ ¼ −0.000 001 840 3431ð43Þ;

Cð2Þ
e;VPwfð14αÞ ¼ −0.000 051 091 98ð22Þ: ð90Þ

For the potential correction, the Uehling contribution vanishes
Beier et al. (2000), and for the Wichmann-Kroll part we take
the value of Lee et al. (2005), which has a negligible
uncertainty from omitted binding corrections for the present
level of uncertainty. This leads to

Cð2Þ
e;VPpð6αÞ ¼ 0.000 000 008 201ð11Þ;

Cð2Þ
e;VPpð14αÞ ¼ 0.000 000 5467ð11Þ; ð91Þ

and for the total lowest-order vacuum-polarization coefficient

Cð2Þ
e;VPð6αÞ ¼ −0.000 001 832 142ð12Þ;

Cð2Þ
e;VPð14αÞ ¼ −0.000 050 5452ð11Þ: ð92Þ

Moreover, we have

Cð2Þ
e ð6αÞ ¼ Cð2Þ

e;SEð6αÞ þ Cð2Þ
e;VPð6αÞ

¼ 0.500 181 774 989ð81Þ;
Cð2Þ
e ð14αÞ ¼ Cð2Þ

e;SEð14αÞ þ Cð2Þ
e;VPð14αÞ

¼ 0.501 262 0929ð12Þ: ð93Þ

The two-photon n ¼ 2 correction factor for the ground S
state is (Pachucki et al., 2005; Jentschura et al., 2006)

Cð4Þ
e ðxÞ ¼

�
1þ x2

6

�
Cð4Þ
e þ x4

�
14

9
lnðx−2Þ þ 991 343

155 520

−
2

9
ln k0 −

4

3
ln k3 þ

679π2

12 960

−
1441π2

720
ln 2þ 1441

480
ζð3Þ þ 16 − 19π2

216

�

þ 1

2
x5Rð4ÞðxÞ; ð94Þ

where Cð4Þ
e ¼ −0.328 478 444 00…. The last term in square

brackets for the contribution of order x4, absent in the previous
adjustment, is the light-by-light scattering contribution
(Czarnecki and Szafron, 2016).
The term x5Rð4ÞðxÞ in Eq. (94) is the contribution of

order x5 and higher from diagrams with zero, one, or two
vacuum-polarization loops. Yerokhin and Harman (2013)
have performed nonperturbative calculations for many of
the vacuum-polarization contributions to this function,

denoted here by Rð4Þ
VP, with the results

Rð4Þ
VPð6αÞ ¼ 14.28ð39Þ; Rð4Þ

VPð14αÞ ¼ 12.72ð4Þ ð95Þ
for our two ions. These vacuum-polarization values are the
sum of three contributions. The first, denoted with subscript
SVPE, is from self-energy vertex diagrams with a free-
electron vacuum-polarization loop included in the photon
line and magnetic interactions on the bound-electron line. This
calculation involves severe numerical cancellations when
lower-order terms are subtracted for small Z. The results

Rð4Þ
SVPEð6αÞ¼ 0.00ð15Þ; Rð4Þ

SVPEð14αÞ¼−0.152ð43Þ ð96Þ

were extrapolated from results for Z ≥ 20. The second con-
tribution, denoted with subscript SEVP, is from screening-like
diagrams with separate self-energy and vacuum-polarization
loops. The vacuum-polarization loop includes the higher-order
Wichmann-Kroll terms and magnetic interactions are only
included in the bound-electron line. This set gives

Rð4Þ
SEVPð6αÞ ¼ 7.97ð36Þ; Rð4Þ

SEVPð14αÞ ¼ 7.62ð1Þ: ð97Þ

The third contribution, denoted with subscript VPVP,
comes from twice-iterated vacuum-polarization diagrams
and from the Källén-Sabry corrections with free-electron
vacuum-polarization loops, all with magnetic interactions on
the bound-electron line. This set gives

Rð4Þ
VPVPð6αÞ ¼ 6.31; Rð4Þ

VPVPð14αÞ ¼ 5.25: ð98Þ

The results for this latter contribution are consistent with a
perturbative result at x ¼ 0 given by (Jentschura, 2009)

Rð4Þ
VPVPð0Þ ¼

�
1 420 807

238 140
þ 832

189
ln 2 −

400

189
π
�
π

¼ 7.4415…: ð99Þ

Czarnecki et al. (2018) performed perturbative calculations
at x ¼ 0 for a complementary set of diagrams contributing
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to Rð4ÞðxÞ. These calculations include self-energy diagrams
without vacuum-polarization loops, with the combined result

ΔRð4Þð0Þ ¼ 4.730 4ð9Þ: ð100Þ

This value has three contributions. One is from self-energy
diagrams without vacuum-polarization loops given by

Rð4Þ
SE ð0Þ ¼ 0.587 35ð9Þπ2: ð101Þ

The second set has light-by-light diagrams with nuclear
interactions in a vacuum-polarization loop inserted into the
photon line in a self-energy diagram, which gives

Rð4Þ
LBLð0Þ ¼ −0.172 452 6ð1Þπ2: ð102Þ

The remaining contribution with external magnetic-field
coupling to a virtual-electron loop is given by

Rð4Þ
MLð0Þ ¼

�
−
101 698 907

3 402 000
þ 92 368

2025
ln 2 −

7843

16 200
π
�
π

¼ 0.064 387…π2: ð103Þ

The results by Yerokhin and Harman (2013) and Czarnecki
et al. (2018) can be combined to give

Rð4ÞðxÞ ¼ Rð4Þ
VPðxÞ þ ΔRð4Þð0Þ; ð104Þ

which has uncertainty computed in quadrature from that of

Rð4Þ
VPðxÞ and, following Czarnecki et al. (2018),

u½ΔRð4Þð0Þ� ¼ jx ln3ð1=x2Þj ð105Þ

taken to be on the order of the contribution of the next-
order term. For x ¼ 6α and 14α, this uncertainty is approx-
imately twice ΔRð4Þð0Þ. Finally, we have for the two-photon
coefficients

Cð4Þ
e ð6αÞ ¼ −0.328 579 22ð86Þ;

Cð4Þ
e ð14αÞ ¼ −0.329 161ð54Þ: ð106Þ

For n > 2 contributions Δgð2nÞ to the radiative correction, it
is sufficient to use the observations of Eides and Grotch
(1997) and Czarnecki, Melnikov, and Yelkhovsky (2000),
who showed that

Cð2nÞ
e ðZαÞ ¼

�
1þ ðZαÞ2

6
þ � � �

�
Cð2nÞ
e ð107Þ

for all n. The values for constants Cð2nÞ
e for n ¼ 1 through 5

are given in Table XII. This dependence for n ¼ 1 and 2 can
be recognized in Eqs. (83) and (106), respectively. For n ¼ 3

we use

Cð6Þ
e ðZαÞ ¼ 1.181 611… for Z ¼ 6;

¼ 1.183 289… for Z ¼ 14; ð108Þ

while for n ¼ 4 we have

Cð8Þ
e ðZαÞ ¼ −1.911 933… for Z ¼ 6;

¼ −1.914 647… for Z ¼ 14; ð109Þ

and, finally, for n ¼ 5

Cð10Þ
e ðZαÞ ¼ 6.67ð19Þ… for Z ¼ 6

¼ 6.68ð19Þ… for Z ¼ 14: ð110Þ

Recoil of the nucleus gives a correction Δgrec proportional
to the electron-nucleus mass ratio and can be written as

Δgrec ¼ Δgð0Þrec þ Δgð2Þrec þ � � �, where the two terms are zero
and first order in α=π, respectively. The first term is (Eides and
Grotch, 1997; Shabaev and Yerokhin, 2002)

Δgð0Þrec ¼
�
−ðZαÞ2 þ ðZαÞ4

3½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðZαÞ2

p
�2 − ðZαÞ5PðZαÞ

�
me

mN

þ ð1þZÞðZαÞ2
�
me

mN

�
2

; ð111Þ

wheremN is the mass of the nucleus. Mass ratios, based on the
current adjustment values of the constants, areme=mð12C6þÞ ¼
0.000 045 727 5… and me=mð28Si14þÞ ¼ 0.000 019 613 6….
For carbon Pð6αÞ ¼ 10.493 95ð1Þ, and for silicon we use the
interpolated value Pð14αÞ ¼ 7.162 23ð1Þ.
For Δgð2Þrec we have

Δgð2Þrec ¼ α

π
ðZαÞ2
3

me

mN
þ � � � : ð112Þ

The uncertainty in Δgð2Þrec is negligible compared to that

of Δgð2Þrad.
Glazov and Shabaev (2002) have calculated the nuclear-size

correction Δgns;LO within lowest-order perturbation theory
based on a homogeneous-sphere nuclear-charge distribution
and Dirac wave functions for the electron bound to a point
charge. To good approximation, the correction is (Karshenboim,
2000)

−
8

3
ðZαÞ4

�
RN

ƛC

�
2

; ð113Þ

where RN is the root-mean-square nuclear-charge radius and ƛC
is the reduced Compton wavelength of the electron. In the
CODATA adjustment, we scale the values of Glazov and
Shabaev (2002) with the squares of updated values for the
nuclear radii RN ¼ 2.4702ð22Þ fm and RN ¼ 3.1224ð24Þ fm
from the compilation ofAngeli andMarinova (2013) for 12C and
28Si, respectively.
Recently, higher-order contributions of the nuclear-size

correction have been computed by Karshenboim and
Ivanov (2018a). They are

Δgns;NLO ¼ −
�
2

3
Zα

RN

ƛC
CZF þ

α

4π

�
Δgns;LO; ð114Þ
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where CZF ¼ 3.3 is the ratio of the Zemach or Friar moment
(Friar and Payne, 1997) to R3

N for a homogeneous-sphere
nuclear-charge distribution. We assume that Δgns;NLO has a
10% uncertainty.
The sum of the scaled nuclear-size correction of Glazov and

Shabaev (2002) and Eq. (114) yields

Δgns ¼ −0.000 000 000 407ð1Þ for 12C5þ;

Δgns ¼ −0.000 000 020 48ð3Þ for 28Si13þ ð115Þ

for the total nuclear-size correction.
Tables XVI and XVII list the contributions discussed above

to geðXÞ for X ¼ 12C5þ and 28Si13þ, respectively. The final
values are

geð12C5þÞ ¼ −2.001 041 590 153ð25Þ;
geð28Si13þÞ ¼ −1.995 348 9571ð17Þ ð116Þ

with uncertainties that are dominated by that of the two-photon
radiative correction Δgð4Þ. This uncertainty is dominated by
terms proportional to ðZαÞ6 multiplying various powers of
ln½ðZαÞ−2�. We shall assume that the uncertainties for this
contribution are correlated with a correlation coefficient of

r ¼ 0.80 ð117Þ

for our two hydrogenic ions. The derived value for the electron
mass depends only weakly on this assumption; the value for the
mass changes by only 2 in the last digit and the uncertainty
varies by 1 in its last digit.

B. Measurements of precession and cyclotron frequencies
of 12C5 + and 28Si13 +

The experimentally determined quantities are ratios of the
electron spin-precession (or spin-flip) frequency in hydro-
genic carbon and silicon ions to the cyclotron frequency of the
ions, both in the same magnetic flux density. The input
data used in the 2018 adjustment for hydrogenic carbon and
silicon are

ωsð12C5þÞ
ωcð12C5þÞ ¼ 4376.210 500 87ð12Þ ½2.8 × 10−11� ð118Þ

and

ωsð28Si13þÞ
ωcð28Si13þÞ

¼ 3912.866 064 84ð19Þ ½4.8 × 10−11� ð119Þ

with correlation coefficient

r

�
ωsð12C5þÞ
ωcð12C5þÞ ;

ωsð28Si13þÞ
ωcð28Si13þÞ

�
¼ 0.347; ð120Þ

both obtained at MPIK using a multi-zone cylindrical Penning
trap operating at B ¼ 3.8 T and in thermal contact with a
liquid helium bath (Sturm et al., 2013, 2014; Köhler et al.,
2015; Sturm, 2015). The development of this trap and
associated measurement techniques has occurred over a
number of years, leading to the current uncertainties below
5 parts in 1011. A detailed discussion of the uncertainty budget
and covariance and additional references can be found in the
2014 CODATA adjustment. We identify the results in
Eqs. (118) and (119) by MPIK-15.

C. Observational equations for 12C5 + and 28Si13 + experiments

The observational equations that apply to the frequency-ratio
experiments on hydrogenic carbon and silicon and theoretical
computations of their g-factors follow from Eq. (78) when it is
expressed in terms of the adjusted constants. That is,

ωsð12C5þÞ
ωcð12C5þÞ ≐ −

geð12C5þÞ þ δthðCÞ
10ArðeÞ

×

�
12 − 5ArðeÞ þ

α2ArðeÞ
2R∞

ΔEBð12C5þÞ
hc

�
ð121Þ

for 12C5þ usingArð12CÞ≡ 12, Eq. (64), and Eq. (67). Similarly,

ωsð28Si13þÞ
ωcð28Si13þÞ

≐ −
geð28Si13þÞ þ δthðSiÞ

26ArðeÞ
Arð28Si13þÞ ð122Þ

for 28Si13þ. In these two equations, α, R∞, the relative atomic
masses ArðeÞ and Arð28Si13þÞ, binding energy ΔEBð12C5þÞ,
and additive corrections δthðCÞ and δthðSiÞ to the theoretical

TABLE XVI. Theoretical contributions and total value for the
g-factor of hydrogenic 12C5þ based on the 2018 recommended values
of the constants.

Contribution Value Source

Dirac gD −1.998 721 354 3910ð4Þ Eq. (80)
Δgð2ÞSE

−0.002 323 672 4382ð5Þ Eq. (89)

Δgð2ÞVP
0.000 000 008 511 Eq. (92)

Δgð4Þ 0.000 003 545 708(25) Eq. (106)
Δgð6Þ −0.000 000 029 618 Eq. (108)
Δgð8Þ 0.000 000 000 111 Eq. (109)
Δgð10Þ −0.000 000 000 001 Eq. (110)
Δgrec −0.000 000 087 629 Eqs. (111) and (112)
Δgns −0.000 000 000 407ð1Þ Eq. (115)
gð12C5þÞ −2.001 041 590 153ð25Þ Eq. (116)

TABLE XVII. Theoretical contributions and total value for the
g-factor of hydrogenic 28Si13þ based on the 2018 recommended
values of the constants.

Contribution Value Source

Dirac gD −1.993 023 571 552ð2Þ Eq. (80)
Δgð2ÞSE

−0.002 328 917 509ð3Þ Eq. (89)

Δgð2ÞVP
0.000 000 234 81(1) Eq. (92)

Δgð4Þ 0.000 003 5530(17) Eq. (106)
Δgð6Þ −0.000 000 029 66 Eq. (108)
Δgð8Þ 0.000 000 000 11 Eq. (109)
Δgð10Þ −0.000 000 000 00 Eq. (110)
Δgrec −0.000 000 205 88 Eqs. (111) and (112)
Δgns −0.000 000 020 48ð3Þ Eq. (115)
gð28Si13þÞ −1.995 348 9571ð17Þ Eq. (116)
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g-factors of 12C5þ and 28Si13þ are adjusted constants. Of course,
the observational equation

Arð28SiÞ ≐ Arð28Si13þÞ þ 13ArðeÞ

−
α2ArðeÞ
2R∞

ΔEBð28Si13þÞ
hc

ð123Þ

relates the relative atomic mass of the silicon ion to that of the
input datum of the neutral atom and ΔEBð28Si13þÞ is an
adjusted constant.
The theoretical expressions for g-factors geð12C5þÞ and

geð28Si13þÞ are functions of adjusted constant α. The obser-
vational equations for the additive corrections δthðCÞ and
δthðSiÞ for these g-factors are

δX ≐ δthðXÞ

for X ¼ C and Si with input data

δC ¼ 0.0ð2.5Þ × 10−11;

δSi ¼ 0.0ð1.7Þ × 10−9; ð124Þ

and uðδC; δSiÞ ¼ 3.4 × 10−20 from Eqs. (116) and (117).
The input data are summarized as entries D7 through D13

in Table XXI and observational equations can be found in
Table XXVI.

XII. MUONIC HYDROGEN AND DEUTERIUM
LAMB SHIFT

Muonic hydrogen and deuterium, μH and μD, respectively,
are atoms consisting of a proton or a deuteron and a negatively
charged muon. Since the mass of a muon is just over 200 times
larger than that of the electron, the muonic Bohr radius is
200 times smaller than the electronic Bohr radius and the
muon wave-function overlap with the proton or deuteron is
more than a million times larger than in normal H or D.
Consequently, the “muonic” Lamb shift, the energy difference
ΔELSðXÞ ¼ E2P1=2ðXÞ − E2S1=2ðXÞ between the 2S1=2 and
2P1=2 levels, is much more sensitive to the proton and deuteron
charge radii, rp and rd.
The energy of the 2S1=2 level in H and D is higher than that

of 2P1=2. Because of the much larger electron vacuum-
polarization contribution, however, the energy of the 2S1=2
level in μH and μD lies below that of 2P1=2. In normal H and
D, the Lamb shift is about h × 1 GHz or 0.004 meV, while in
μH and μD it is about h × 50 THz or 200 meV.
The first successful measurement of the Lamb shift

of μH was carried out by the Charge Radius Experiment
with Muonic Atoms (CREMA) collaboration at the Paul
Scherrer Institute, Switzerland, in 2010 (Pohl et al., 2010).
(Strictly speaking, the authors measured the transition energy
between the 2S1=2 and 2P3=2 levels. The 2P1=2-2P3=2 fine-
structure interval is sufficiently well known from theory that
the uncertainty budget for the Lamb shift is not affected.)
Based on the theory of ΔELSðμHÞ as it existed at the time, the
CREMA collaboration derived that rp ¼ 0.841 84ð67Þ fm.
This value was inconsistent with the 2006 CODATA

recommended value based on hydrogen spectroscopic and
e-p elastic scattering data and gave rise to the “proton-radius
puzzle.”
For the CODATA 2010 adjustment, new elastic e-p scatter-

ing data from Bernauer et al. (2010) also became available.
Their derived value for rp agreed with the CODATA 2006
recommended value. Because of the strong disagreement of rp
derived from μH spectroscopy and the value of rp derived
from hydrogen spectroscopic and e-p scattering data, the
Task Group decided not to include μH data in 2010. As a
consequence, the disagreement between rp based on the μH
Lamb shift and the CODATA 2010 recommended value
increased to seven standard deviations.
In 2013, the CREMA collaboration reported a second

experimental value for ΔELSðμHÞ (Antognini et al., 2013;
Antognini, Kottmann et al., 2013), as well as advances in the
theory of μH, which together yielded a value for rp that was
consistent with their 2010 estimate and had an even smaller
uncertainty. Thus it did not alter the status of the proton-radius
puzzle and the Task Group decided to omit μH data from the
2014 adjustment as well. In simplest terms, the puzzle was
that there are two plausible values for rp: a “low” value of
about 0.84 fm and a CODATA recommended “high” value of
about 0.88 fm.
Efforts to solve the proton-radius puzzle have continued.

For example, a value for the deuteron radius rd, obtained from
a measurement of ΔELSðμDÞ, has been reported by the
CREMA collaboration (Pohl et al., 2016). Their value for
rd also confirmed the value for rp based on μH data when it
was combined with a measurement of the difference of the
Lyman-α transition energy of normal H and D by Parthey et al.
(2010), item A5 in Table X, and the theory of H and D.
The Task Group believes that the muonic data have been

sufficiently verified and has decided to include the μH and μD
Lamb-shift data in the 2018 CODATA adjustment. Moreover,
three measurements of transition energies in hydrogen have
become available since the previous adjustment. Their con-
tributions decrease the value of rp based solely on hydrogen
spectroscopy. See also the discussions in Sec. IV.C and VII.C.
Inconsistencies that exist among data that relate to the
determination of rp and rd are dealt with by applying a
multiplicative expansion factor to the uncertainties of the
relevant data. We review the μH and μD Lamb-shift data and
relevant theory in the next two sections. Input data from the
Lamb-shift measurements, theoretical additive constants, and
theoretical parameters are summarized in Table XVIII.
Observational equations are found in Table XXIII.

A. Muonic hydrogen Lamb shift

The CREMA collaboration measured the μH Lamb
shift ΔELSðμHÞ ¼ 202.3706ð23Þ meV with ur ¼ 1.1 × 10−5

(Antognini et al., 2013). The value was derived from the
measured hyperfine-resolved 2S1=2ðf ¼ 0Þ → 2P3=2ðf ¼ 1Þ
transition energy, the previously reported CREMA value of
the 2S1=2ðf ¼ 1Þ → 2P3=2ðf ¼ 2Þ transition energy (Pohl
et al., 2010) updated as described by Antognini et al.
(2013), and the sufficiently accurate theoretical estimates
of the 2P fine-structure and 2P3=2 hyperfine splittings by
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Antognini, Kottmann et al. (2013). The two experimental
transition energies also led to the determination of the
magnetic Zemach radius of the proton. Details regarding
the CREMA experiment have been described in the 2014
CODATA publication. The measured value is datum C1 in
Table XVIII.
We use the theoretical expression for the muonic

hydrogen Lamb shift from Peset and Pineda (2015) in order
to derive a value for the proton charge radius rp. It is based
on perturbation theory in a nonrelativistic effective field
theory derived from higher-energy QED and QCD descrip-
tions. For example, QED contributions up to α5mμc2 and
α6 lnðα−2Þmμc2 have been included. Unlike for the theoretical
description of the H and D energy levels in Sec. VII.A, where
we add many contributions to find level energies, we use

D0H þD2Hr2p ð125Þ

for the theoretical Lamb shift in the least-squares adjustment.
The values and uncertainties for D0H and D2H are taken
from Peset and Pineda (2015) and given as items C3 and
C4 in Table XVIII. This simpler procedure is justified, as
nearly 95% of the muonic Lamb shift is due to the electron
vacuum-polarization correction of order α3mμc2 in D0H and
the uncertainty of D0H is due to uncertainties in proton-
structure corrections that are independent of rp. The corre-
sponding relative standard uncertainty is orders of magnitude
larger than those in α and mμ. Approximately 5% of the
Lamb shift is due to the second term in Eq. (125). An early
description of the theory for the muonic Lamb shift was
published by Pachucki (1996).
For the CODATA adjustment, the relevant observational

equations are

ΔELSðμHÞ ≐ D0H þD2Hr2p þ δthðμHÞ ð126Þ

and

δELSðμHÞ ≐ δthðμHÞ: ð127Þ

Here, the proton charge radius rp and additive constant
δthðμHÞ are adjusted constants and input datum δELSðμHÞ ¼
0.0000ð129Þ meV accounts for the uncertainty from uncom-
puted terms in D0H and the uncertainty of D2H, although the
latter uncertainty is currently inconsequential. Substitution of
input data C1, C3, C4, and C7 from Table XVIII into
Eq. (126) yields rp ¼ 0.8413ð15Þ fm.
In 2013,Antognini et al. (2013) used theoretical estimates for

D0H andD2H by Antognini, Kottmann et al. (2013) to publish a
value for rp. The value for D0H is consistent with that of Peset
and Pineda (2015). The uncertainty from Antognini, Kottmann
et al. (2013), however, is five times smaller. The theory of Peset
and Pineda (2015) is chosen over that of Antognini, Kottmann
et al. (2013) as their estimate and uncertainty of hadronic
corrections provide a more conservative value of rp. Similarly,
Karshenboim et al. (2015) gave smaller uncertainties on the
quantities D0H and D2H. Because the proton-radius puzzle is
only partly resolved, a more conservative approach seems
warranted. It, however, does point to the need for future research
and possible future improvements in the accuracy of the proton
charge radius.

B. Muonic deuterium Lamb shift

The CREMA collaboration measured the μD Lamb shift
ΔELSðμDÞ ¼ 202.8785ð34Þ meV with ur ¼ 1.7 × 10−5 (Pohl
et al., 2016). In fact, the data were acquired during the same
measurement period and using the same general method
as for the muonic hydrogen data described in the previous
section. The result is based on the measurement of the three
hyperfine-resolved transition energies 2S1=2ðf ¼ 3=2Þ →
2P3=2ðf ¼ 5=2Þ, 2S1=2ðf ¼ 1=2Þ → 2P3=2ðf ¼ 3=2Þ, and
2S1=2ðf ¼ 1=2Þ → 2P3=2ðf ¼ 1=2Þ. As with the μH data,

TABLE XVIII. Input data for the experimental determinations of muonic hydrogen and muonic deuterium Lamb shifts ΔELSðμXÞ, theoretical
coefficientsDiX for these Lamb shifts, additive energy corrections δELSðμXÞ, as well as the proton (p) and deuteron (d) root-mean-square charge
radii rN based on electron-proton and electron-deuteron scattering. The label in the first column is used in Table XXIII for observational
equations. Only items C1, C2, and C7–C10 are input data in the adjustment. Columns two and three give the reference and an abbreviation of the
name of the laboratory in which the experiment has been performed. An extensive list of abbreviations is found at the end of this report. The role
of the expansion coefficients, items C3–C6, and the rationale for the values and uncertainties of the radii, C9 and C10, are discussed in the text.
Relative standard uncertainties in square brackets are relative to the value of the theoretical quantity to which the additive correction
corresponds. There are no correlations among these data.

Reference Lab. Input datum Value
Rel. stand.
unc. ur

C1 Antognini et al. (2013) CREMA ΔELSðμHÞ 202.3706(23) meV 1.1 × 10−5

C2 Pohl et al. (2016) CREMA ΔELSðμDÞ 202.8785(34) meV 1.7 × 10−5

C3 Peset and Pineda (2015) UBarc D0H 206.0698(129) meV 6.2 × 10−5

C4 Peset and Pineda (2015) UBarc D2H −5.2270ð7Þ meV fm−2 1.3 × 10−4

C5 Kalinowski (2019) WarsU D0D 230.5247(210) meV 9.1 × 10−5

C6 Krauth et al. (2016) MPQ D2D −6.110 25ð28Þ meV fm−2 4.6 × 10−5

C7 theory δELSðμHÞ 0.0000(129) meV ½6.4 × 10−5�
C8 theory δELSðμDÞ 0.0000(210) meV ½1.0 × 10−4�
C9 rp 0.880(20) fm 2.3 × 10−2

C10 rd 2.111(19) fm 9.0 × 10−3
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Pohl et al. (2016) made use of the sufficiently well-known 2P
fine-structure splitting and the 2P3=2 hyperfine splitting, both
due to Krauth et al. (2016), to derive the Lamb shift. The
0.0034 meV total uncertainty is the root-sum-square of a
0.0031 meV statistical component and a 0.0014 meV com-
ponent from systematic effects. The measured value is datum
C2 in Table XVIII.
The observational equations for ΔELSðμDÞ are based on the

recent theoretical treatment of the n ¼ 2 energy levels of μD
by Krauth et al. (2016) and Kalinowski (2019). That is,

ΔELSðμDÞ ≐ D0D þD2Dr2d þ δthðμDÞ ð128Þ
and

δELSðμDÞ ≐ δthðμDÞ; ð129Þ

where the deuteron charge radius rd and additive constant
δthðμDÞ are adjusted constants. Values and uncertainties for
D0D and D2D are given as items C5 and C6 in Table XVIII.
The coefficient D2D is due to Krauth et al. (2016). The
coefficient D0D is the sum of two terms. The first is 228.776
66(96) meV also due to Krauth et al. (2016) and accounts for
all contributions that do not explicitly depend on rd. The
second is 1.748(21) meV from Kalinowski (2019), which we
use for the nuclear-polarizability contribution instead of the
corresponding value by Krauth et al. (2016). Input datum
δELSðμDÞ ¼ 0.0000ð210Þ meV incorporates the uncertainty
from uncomputed terms in the theoretical energy D0D and
the uncertainty of the coefficient D2D, although the latter
uncertainty has currently no influence on the adjustment.
Substitution of input data C2, C5, C6, and C8 from
Table XVIII into Eq. (128) yields rd ¼ 2.127 10ð81Þ fm.

C. Deuteron-proton charge radius difference

The deuteron-proton radius difference r2d − r2p is con-
strained by the μH and μD Lamb-shift measurements, but
also by the measurement of the isotope shift of the 1S-2S
transition in H and D by Parthey et al. (2010), item A5 in
Table X. From the 2018 CODATA adjustment its recom-
mended value is

r2d − r2p ¼ 3.820 36ð41Þ fm2; ð130Þ

mainly constrained by the H to D isotope shift measurement.

XIII. ELECTRON-PROTON AND ELECTRON-DEUTERON
SCATTERING

In electron-proton and electron-deuteron elastic scattering
experiments, the differential scattering cross section for the
electron is measured as a function of the incident energy of the
electrons, Einc, and the electron scattering angle θ. From these
data, the electric form factor of the proton GEðQ2Þ as a
function of the negative of the squared four-momentum
transfer Q2 can be extracted. Here, Q2 is uniquely specified
by Einc and θ, as in these experiments the initial momentum of
the proton is negligibly small and the incident and final
electron energies are much larger than the rest energy of the
electron [see, for example, Bernauer et al. (2014)]. A typical

upper bound for the incident electron energy is the rest energy
of the proton or deuteron.
A function is then fit to the data for the form factor GEðQ2Þ

and the root-mean-square charge radius rN is calculated from
the slope of GEðQ2Þ at Q2 ¼ 0. Because cross-section mea-
surements are not possible at Q2 ¼ 0, the function chosen to

TABLE XIX. Fifty of the 75 adjusted constants in the 2018
CODATA least-squares minimization. Other variables in the adjust-
ment are given in Table XI.

Adjusted constant Symbol

fine-structure constant α
Rydberg constant R∞
proton rms charge radius rp
deuteron rms charge radius rd
Newtonian constant of gravitation G
electron relative atomic mass ArðeÞ
proton relative atomic mass ArðpÞ
neutron relative atomic mass ArðnÞ
deuteron relative atomic mass ArðdÞ
triton relative atomic mass ArðtÞ
helion relative atomic mass ArðhÞ
alpha particle relative atomic mass ArðαÞ
28Si13þ relative atomic mass Arð28Si13þÞ
87Rb relative atomic mass Arð87RbÞ
133Cs relative atomic mass Arð133CsÞ
1Hþ electron removal energy ΔEBð1HþÞ
HDþ electron ionization energy ΔEIðHDþÞ
3Heþ electron ionization energy ΔEIð3HeþÞ
4He2þ electron removal energy ΔEBð4He2þÞ
12C5þ electron removal energy ΔEBð12C5þÞ
12C6þ electron removal energy ΔEBð12C6þÞ
28Si13þ electron removal energy ΔEBð28Si13þÞ
additive correction to aeðthÞ δthðeÞ
muon magnetic-moment anomaly aμ
additive correction to gCðthÞ δthðCÞ
additive correction to gSiðthÞ δthðSiÞ
additive correction to ΔνMuðthÞ δthðMuÞ
electron-muon mass ratio me=mμ
additive correction to μ-H Lamb shift δthðμHÞ
additive correction to μ-D Lamb shift δthðμDÞ
deuteron-electron magnetic-moment ratio μd=μe−
electron-proton magnetic-moment ratio μe−=μp
electron to shielded proton μe−=μ0p
magnetic moment ratio
shielded helion to shielded proton μ0h=μ

0
p

magnetic moment ratio
neutron to shielded proton μn=μ0p
magnetic-moment ratio
triton to proton magnetic-moment ratio μt=μp
shielding difference of d and p in HD σdp
shielding difference of t and p in HT σtp
d220 of an ideal natural Si crystal d220
d220 of Si crystal ILL d220ðILLÞ
d220 of Si crystal MO� d220ðMO�Þ
d220 of Si crystal N d220ðNÞ
d220 of Si crystal NR3 d220ðNR3Þ
d220 of Si crystal NR4 d220ðNR4Þ
d220 of Si crystal WASO 04 d220ðW04Þ
d220 of Si crystal WASO 17 d220ðW17Þ
d220 of Si crystal WASO 4.2a d220ðW4.2aÞ
Copper Kα1 x unit xuðCuKα1Þ
Ångstrom star Å�

Molybdenum Kα1 x unit xuðMoKα1Þ
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extrapolate to this limit and the largest Q2 value in the data set
are critical for the determination of the uncertainty budget for
rN . In addition, various systematic effects must be accounted
for in the procedure to extract the form factor from the cross
section.
We review rp and rd obtained from scattering data in the

next two sections. Input data and observation equations are
summarized in Tables XVIII and XXIII, respectively.

A. Proton radius from e-p scattering

Currently, the most extensive e-p scattering data are
those obtained by the A1 Collaboration at Mainz
University, Germany, with the Mainz linear accelerator
(MAMI). Their data have been published by Bernauer et al.
(2010, 2014). About 1400 cross sections were measured at six
electron beam energies ranging from 180 MeV to 855 MeV
with Q2 from 0.003ðGeV=cÞ2 to 1ðGeV=cÞ2. The 2010
value rp ¼ 0.8791ð79Þ fm from these authors was used in
the CODATA 2010 adjustment, as was the value rp ¼
0.895ð18Þ fm due to Sick (2003, 2007, 2008). The only
scattering value of the proton radius used as an input datum
in the 2014 adjustment was rp ¼ 0.879ð11Þ fm, a weighted
mean of the values by Arrington and Sick (2015) and
Bernauer and Distler (2015). The uncertainty was the simple
average of the individual uncertainties because each value was
based on essentially the same data.
Before the closing date for new data for the 2018 adjust-

ment, various authors reanalyzed the e-p scattering data with a
variety of methods. Four such values are rp ¼ 0.840ð16Þ fm
given by Griffioen, Carlson, and Maddox (2016), obtained
from the Mainz data with values of Q2 below 0.02ðGeV=cÞ2;
rp ¼ 0.844ð7Þ fm obtained by Alarcón et al. (2019) using
chiral effective field theory; rp ¼ 0.845ð1Þ fm from Zhou
et al. (2019) employing constrained Gaussian processes; and
rp ¼ 0.855ð11Þ fm due to Horbatsch, Hessels, and Pineda
(2017) using chiral perturbation theory. Larger values, for
example, rp ¼ 0.916ð24Þ fm obtained by Lee, Arrington, and
Hill (2015), were found by only analyzing the e-p scattering
data of Bernauer et al. (2010). Most recently, Hayward and
Griffioen (2020) found rp ¼ 0.841ð4Þ fm from characterizing
the effects of bias when omitting large-Q2 data.
Based on these new analyses and the input data used

for the 2010 and 2014 adjustments, the Task Group has
decided to adopt as the only e-p scattering input datum
rp ¼ 0.880ð20Þ fm. This value and uncertainty are chosen
so that all evaluations of rp lie within two standard deviations
from this mean value. The value is essentially the same value
as used in the 2014 adjustment but with an uncertainty that is
approximately twice as large.
For completeness, we note that results for rp from two new

e-p scattering experiments have become available after the
31 December 2018 closing date of the 2018 adjustment.
Xiong et al. (2019) report rp ¼ 0.831ð24Þ fm determined by
the PRad Collaboration at the Thomas Jefferson National
Accelerator Laboratory, USA; and Mihovilovič et al. (2019)
report rp ¼ 0.870ð28Þ fm from a recent experiment per-
formed at MAMI.

B. Deuteron radius from e-d scattering

Since 1998, the input datum for the charge radius of the
deuteron obtained from elastic e-d scattering data in the
CODATA adjustments is rd ¼ 2.130ð10Þ fm as determined
by Sick and Trautmann (1998) and Sick (2001). This value is
based on some 340 cross-section data points for momentum
transfers less than 2 GeV=c.
Recently, Hayward and Griffioen (2020) determined with a

novel algorithm the structure function AðQ2Þ, a combination
of electric, magnetic, and quadrupole form factors, from
elastic e-d scattering data and extrapolated to Q2 ¼ 0. The
radius rd is then determined from the slope of AðQ2Þ at
Q2 ¼ 0. Only the data set of Simon, Schmitt, and Walther
(1981), however, could be usefully analyzed with their
algorithm. This yielded rd ¼ 2.092ð19Þ fm.
In view of this result and the many questions raised

concerning the extraction of reliable values of rp and rd from
scattering data, the value rd ¼ 2.111ð19Þ fm is adopted as the
e-d scattering input datum for the 2018 adjustment. It is the
average of rd ¼ 2.092ð19Þ fm and the long-used historical
value rd ¼ 2.130ð10Þ fm with an uncertainty of one-half their
difference. Coincidentally, this uncertainty is the same as that
of Hayward and Griffioen (2020).

XIV. MAGNETIC-MOMENT RATIOS OF LIGHT ATOMS
AND MOLECULES

The CODATATask Group recommends values for the free-
particle magnetic moments of leptons, the neutron, and light
nuclei. The most precise means to determine the free magnetic
moments of the electron, muon, and proton are discussed in
Secs. VIII, XVI, and XV, respectively. In this section, we
describe the determination of the neutron, deuteron, triton, and
helion magnetic moments. The magnetic moment of the 4He
nucleus or α particle is zero.
Nuclear magnetic moments are determined from hydrogen

and deuterium maser experiments and nuclear-magnetic-
resonance (NMR) experiments on atoms and molecules.
Both types of experiments measure ratios of magnetic moments
to remove the need to know the strength of the appliedmagnetic
field. We rely on NMR measurements for ratios of nuclear
magnetic moments in the HD and HT molecules as well as the
ratio of the magnetic moment of the neutron and the helion in
3He with respect to that of the proton in H2O. For these
molecules, the electronic ground state is an electron spin singlet.
The magnetic moment of a nucleus or electron in an atom or

molecule, however, differs from that of a free nucleus or
electron and theoretical binding corrections are used to relate
bound moments to free moments. In the remainder of this
section, we give the relevant theoretical binding corrections to
magnetic-moment ratios and describe experimental input data.
We also describe the binding corrections for magnetic-
moment ratios of an antimuon and electron bound in muonium
(Mu). These will be relevant in the determination of the
electron-to-muon mass ratio in Sec. XVII.

A. Definitions of bound-state and free g-factors

We recall that the Hamiltonian for a magnetic moment μ in
a magnetic flux density B is H ¼ −μ · B. For lepton l, the
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magnetic moment μl ¼ glðe=2mlÞs, where gl, ml, and s are
its g-factor, mass, and spin, respectively. By convention, the
magnetic moment of a neutron or nucleus with spin I is
denoted by

μ ¼ g
e

2mp
I; ð131Þ

where g is the g-factor of the neutron or nucleus. The charge
and mass of the proton mp appear in the definition, regardless
whether or not the particle in question is a proton. The
magnitude of the magnetic moment of a charged lepton is

μl ¼ 1

2
gl

eℏ
2ml

; ð132Þ

while that for the neutron or a nucleus is defined as

μ ¼ gμNi; ð133Þ

where μN ¼ eℏ=2mp is the nuclear magneton and integer or
half-integer i is the maximum positive spin projection of I
given by iℏ.
When electrons bind with nuclei to form ground-state

atoms or molecules, the effective g-factors change. For atomic
H and D in their electronic ground state, the Hamiltonian is

H ¼ ΔωX

ℏ
s · I − geðXÞ

e
2me

s · B − gNðXÞ
e

2mp
I · B; ð134Þ

where ðX;NÞ ¼ ðH; pÞ or (D, d) and the coefficients geðXÞ
and gNðXÞ are bound-state g-factors. For muonium, an atom
where an electron is bound to an antimuon, the corresponding
Hamiltonian is

HMu ¼
ΔωMu

ℏ
se · sμ − geðMuÞ e

2me
se · B

− gμðMuÞ e
2mμ

sμ · B: ð135Þ

B. Theoretical ratios of g-factors in H, D, 3He, and muonium

Theoretical binding corrections to g-factors in the relevant
atoms and muonium have already been discussed in previous
CODATA reports. Relevant references can be found there as
well. Here, we only give the final results. For atomic hydro-
gen, we have

geðHÞ
ge

¼ 1 −
1

3
ðZαÞ2 − 1

12
ðZαÞ4 þ 1

4
ðZαÞ2 α

π

þ 1

2
ðZαÞ2 me

mp
þ 1

2

�
Að4Þ
1 −

1

4

�
ðZαÞ2

�
α

π

�
2

−
5

12
ðZαÞ2 α

π
me

mp
þ � � � ð136Þ

and

gpðHÞ
gp

¼ 1 −
1

3
αðZαÞ − 97

108
αðZαÞ3 þ 1

6
αðZαÞme

mp

3þ 4ap
1þ ap

þ � � � ; ð137Þ

where Að4Þ
1 is given in Eq. (52) and the proton magnetic-

moment anomaly is ap ¼ μp=ðeℏ=2mpÞ − 1 ≈ 1.793. For
deuterium, we have

geðDÞ
ge

¼ 1 −
1

3
ðZαÞ2 − 1

12
ðZαÞ4 þ 1

4
ðZαÞ2 α

π
þ 1

2
ðZαÞ2 me

md

þ 1

2

�
Að4Þ
1 −

1

4

�
ðZαÞ2

�
α

π

�
2

−
5

12
ðZαÞ2 α

π
me

md
þ � � �

ð138Þ

and

gdðDÞ
gd

¼ 1 −
1

3
αðZαÞ − 97

108
αðZαÞ3 þ 1

6
αðZαÞme

md

3þ 4ad
1þ ad

þ � � � ; ð139Þ

where the deuteron magnetic-moment anomaly is ad ¼
μd=ðeℏ=mdÞ − 1 ≈ −0.143. For helium-3, we have

μhð3HeÞ
μh

¼ 1 − 59.967 43ð10Þ × 10−6 ð140Þ

for the magnitude of the magnetic moments (Rudziński,
Puchalski, and Pachucki, 2009). This ratio, however, is not
used as an input datum. It is not coupled to any other data, but
allows the Task Group to provide a recommended value for
the unshielded helion magnetic moment along with other
related quantities.
Finally, for muonium we have

geðMuÞ
ge

¼ 1 −
1

3
ðZαÞ2 − 1

12
ðZαÞ4 þ 1

4
ðZαÞ2 α

π

þ 1

2
ðZαÞ2 me

mμ
þ 1

2

�
Að4Þ
1 −

1

4

�
ðZαÞ2

�
α

π

�
2

−
5

12
ðZαÞ2 α

π
me

mμ
−
1

2
ð1þ ZÞðZαÞ2

�
me

mμ

�
2

þ � � �

ð141Þ

and

gμðMuÞ
gμ

¼ 1 −
1

3
αðZαÞ − 97

108
αðZαÞ3 þ 1

2
αðZαÞme

mμ

þ 1

12
αðZαÞ α

π
me

mμ
−
1

2
ð1þ ZÞαðZαÞ

�
me

mμ

�
2

þ � � � :

ð142Þ

Numerical values for the corrections in Eqs. (136) to (142)
based on 2018 recommended values for α, mass ratios, etc. are
listed in Table XX; uncertainties are negligible. See Ivanov,
Karshenboim, and Lee (2009) for a negligible additional term.
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C. Theoretical ratios of nuclear g-factors in HD and HT

Bound-state corrections to the magnitudes of nuclear
magnetic moments in the diatomic molecules HD and HT
are expressed as

μNðXÞ ¼ ½1 − σNðXÞ�μN; ð143Þ
for nucleus N in molecule X. Here, μN is the magnitude of the
magnetic moment of the free nucleus and σNðXÞ is the nuclear
magnetic shielding correction. In fact, jσNðXÞj ≪ 1.
NMR experiments for these molecules measure the ratio

μNðXÞ
μN0 ðXÞ ¼ ½1þ σN0N þOðσ2Þ� μN

μN0
ð144Þ

for nuclei N and N0 in molecule X ¼ HD or HT and σN0N ¼
σN0 ðXÞ − σNðXÞ is the shielding difference of molecule X. In
the adjustment, corrections of Oðσ2Þ, quadratic in σNðXÞ, are
much smaller than the uncertainties in the experiments and are
omitted.
The theoretical values for shielding differences in HD and

HT are σdp ¼ 20.20ð2Þ × 10−9 and σtp ¼ 24.14ð2Þ × 10−9,
respectively, as reported by Puchalski, Komasa, and Pachucki
(2015). The values are approximately 100 times more accurate
than those used in the 2014 CODATA adjustment and are also
listed as items D42 and D43 in Table XXI. The two shielding
differences are taken as adjusted constants with observational
equations σdp ≐ σdp and σtp ≐ σtp, respectively.

D. Ratio measurements in atoms and molecules

Nine atomic and molecular magnetic-moment ratios
obtained with H and D masers and NMR experiments are
used as input data in the 2018 adjustment, and determine the
magnetic moments of the neutron, deuteron, triton, and helion.
For ease of reference, these experimental frequency ratios are
summarized in Table XXI and given labels D33 through D41.
There are no correlation coefficients among these data greater
than 0.0001. Observational equations are summarized in
Table XXVI.
We note that the primed magnetic moment μ0p appearing in

three input data in Table XXI indicates that the proton is
bound in a H2Omolecule in a spherical sample of liquid water
at 25 °C surrounded by vacuum. The shielding factor for the
proton in water is not known theoretically and, thus, these
measurements cannot be used to determine the free-proton
magnetic moment. The relationships among these three input
data, however, help determine other magnetic moments as

well as the shielding factor of the proton in water. Finally, the
primed quantity μ0h in item D36 is the magnetic moment of the
helion bound in a 3He atom in a 25 °C spherical gaseous
sample of helium-3. In principle, its value can differ from that
of a helion in an isolated 3He atom, that is, μhð3HeÞ as found in
Eq. (140). We assume that environmental effects from distant
helium-3 atoms are negligible and equate the two quantities,
i.e., μ0h ¼ μhð3HeÞ, to determine the magnetic moment of the
free helion.
Our adjusted constants for the determination of the relevant

magnetic moments are μd=μe, μe=μp, μe=μ0p, μ0h=μ
0
p, μn=μ0p,

μt=μp, σdp, and σtp.
The ratio μpðHDÞ=μdðHDÞ obtained by Neronov and

Seregin (2012), item D40 in Table XXI, is a relatively old
result that was not included in the 2014 adjustment, but is
included in the current adjustment. We rely on three deter-
minations of μpðHDÞ=μdðHDÞ in the 2018 CODATA adjust-
ment. The values are from Garbacz et al. (2012), researchers at
the University of Warsaw, Poland; and from Neronov and
Karshenboim (2003) and Neronov and Seregin (2012),
researchers in Saint Petersburg, Russia, who have a long
history of NMR measurements in atoms and molecules. (The
remaining experimental input data have been reviewed in
previous CODATA reports and are not discussed further.)
Neronov and Seregin (2012) describe a complex set of

experiments to determine the free-helion to free-proton
magnetic-moment ratio. We had previously overlooked their
frequency-ratio measurements on HD, which satisfy

ωpðHDÞ
ωdðHDÞ

¼ 2
μpðHDÞ
μdðHDÞ

; ð145Þ

where the factor two appears because the spins of the proton
and deuteron are 1=2 and 1, respectively. The statistical
relative uncertainty of the frequency ratio is given as 7.7
parts in 1010. The line-shape fits by Neronov and Seregin
(2012), however, visibly disagree with the experimental
data and, thus, systematic effects are present. We account
for these effects by increasing the uncertainty by a factor
of 4.0 consistent with determining the NMR frequency of
d in HD to approximately one-tenth of the full-width-half-
maximum of the Lorentzian line.

XV. PROTON MAGNETIC MOMENT IN NUCLEAR
MAGNETONS

The 2017 measurement of the proton magnetic moment in
nuclear magnetons, μp=μN, has been newly added to the
CODATA adjustment. It was obtained using a single proton in
a double Penning trap at the University of Mainz, Germany
(Schneider et al., 2017). The ratio was determined by
measuring its spin-flip transition frequency ωs ¼ 2μpB=ℏ
and its cyclotron frequency ωc ¼ eB=mp in a magnetic flux
density B. As B is the same in both measurements,

ωs

ωc
¼ μp

μN
ð146Þ

independent of B and where μN ¼ eℏ=2mp is the nuclear
magneton.

TABLE XX. Theoretical values for various bound-particle to free-
particle g-factor ratios based on the 2018 recommended values of the
constants.

Ratio Value

geðHÞ=ge 1 − 17.7054 × 10−6

gpðHÞ=gp 1 − 17.7354 × 10−6

geðDÞ=ge 1 − 17.7126 × 10−6

gdðDÞ=gd 1 − 17.7461 × 10−6

geðMuÞ=ge 1 − 17.5926 × 10−6

gμðMuÞ=gμ 1 − 17.6254 × 10−6
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The Mainz value

ωs

ωc
¼ 2.792 847 344 62ð82Þ ½2.9 × 10−10� ð147Þ

is consistent with but supersedes the 2014 result by the
same research group (Mooser et al., 2014). Improvements
in the apparatus led to a relative uncertainty that is more
than an order of magnitude smaller than in 2014. The

TABLE XXI. Input data for the 2018 CODATA adjustment to determine the fine-structure constant, muon mass, masses of nuclei with Z ≤ 2,
and magnetic-moment ratios among these nuclei as well as those of leptons. Relative standard uncertainties in square brackets are relative to the
value of the theoretical quantity to which the additive correction corresponds. The label in the first column is used to specify correlation
coefficients among these data and in Table XXVI observational equations. Columns five and six give the reference, an abbreviation of the name
of the laboratory in which the experiment has been performed, and the year of publication. An extensive list of abbreviations is found at the end
of this report. Correlations among these data are given in Table XXII.

Input datum Value
Rel. stand.
unc. ur Lab. Reference(s) Sec.

Input data relevant for the fine-structure constant and the electron mass
D1 aeðexpÞ 1.159 652 180 73ð28Þ × 10−3 2.4 × 10−10 HarvU-08 Hanneke, Fogwell, and Gabrielse (2008) VIII
D2 δe 0.000ð18Þ × 10−12 [1.5 × 10−11] theory VIII
D3 h=mð87RbÞ 4.591 359 2729ð57Þ×10−9 m2 s−1 1.2 × 10−9 LKB-11 Bouchendira et al. (2011) X
D4 h=mð133CsÞ 3.002 369 4721ð12Þ×10−9 m2 s−1 4.0 × 10−10 UCB-18 Parker et al. (2018) X
D5 Arð87RbÞ 86.909 180 5312(65) 7.4 × 10−11 AMDC-16 Huang et al. (2017) IX
D6 Arð133CsÞ 132.905 451 9610(86) 6.5 × 10−11 AMDC-16 Huang et al. (2017) IX
D7 ωs=ωc for 12C5þ 4376.210 500 87(12) 2.8 × 10−11 MPIK-15 Köhler et al. (2015) XI.B
D8 ΔEBð12C5þÞ=hc 43.563 233ð25Þ × 107 m−1 5.8 × 10−7 ASD-18 IX
D9 δC 0.0ð2.5Þ × 10−11 [1.3 × 10−11] theory XI.C
D10 ωs=ωc for 28Si13þ 3912.866 064 84(19) 4.8 × 10−11 MPIK-15 Sturm et al. (2013) and Sturm (2015) XI.B
D11 Arð28SiÞ 27.976 926 534 99(52) 1.9 × 10−11 AMDC-16 Huang et al. (2017) IX
D12 ΔEBð28Si13þÞ=hc 420.6467ð85Þ × 107 m−1 2.0 × 10−5 ASD-18 IX
D13 δSi 0.0ð1.7Þ × 10−9 [8.3 × 10−10] theory XI.C

Input data relevant for masses of light nuclei
D14 ωcðdÞ=ωcð12C6þÞ 0.992 996 654 743(20) 2.0 × 10−11 UWash-15 Zafonte and Van Dyck (2015) IX
D15 ωcð12C6þÞ=ωcðpÞ 0.503 776 367 662(17) 3.3 × 10−11 MPIK-17 Heiße et al. (2017) IX
D16 ωcðtÞ=ωcð3HeþÞ 0.999 993 384 997(24) 2.4 × 10−11 FSU-15 Myers et al. (2015) IX
D17 ωcðHDþÞ=ωcð3HeþÞ 0.998 048 085 122(23) 2.3 × 10−11 FSU-17 Hamzeloui et al. (2017) IX
D18 ArðnÞ 1.008 664 915 82(49) 4.9 × 10−10 AMDC-16 Huang et al. (2017) IX
D19 Arð1HÞ 1.007 825 032 241(94) 9.3 × 10−11 AMDC-16 Huang et al. (2017) IX
D20 Arð4HeÞ 4.002 603 254 130(63) 1.6 × 10−11 AMDC-16 Huang et al. (2017) IX
D21 ΔEBð1HþÞ=hc 1.096 787 717 4307ð10Þ×107m−1 9.1 × 10−13 ASD-18 IX
D22 ΔEBð4He2þÞ=hc 6.372 195 4487ð28Þ×107 m−1 4.4 × 10−10 ASD-18 IX
D23 ΔEBð12C6þÞ=hc 83.083 850ð25Þ × 107 m−1 3.0 × 10−7 ASD-18 IX
D24 ΔEIð3HeþÞ=hc 43 888 919.36ð3Þ m−1 6.8 × 10−10 ASD-18 IX
D25 ΔEIðHDþÞ=hc 13 122 468.415ð6Þ m−1 4.6 × 10−10 Liu et al. (2010) and Sprecher et al. (2010) IX

Input datum relevant for the muon anomaly
D26 R̄ 0.003 707 2063(20) 5.4 × 10−7 BNL-06 Bennett et al. (2006) XVI.A

Input data relevant for the muon mass and muon magnetic moment
D27 Eð58 MHzÞ=h 627 994.77(14) kHz 2.2 × 10−7 LAMPF-82 Mariam (1981) and Mariam et al. (1982) XVII.B
D28 Eð72 MHzÞ=h 668 223 166(57) Hz 8.6 × 10−8 LAMPF-99 Liu et al. (1999) XVII.B
D29 ΔEMu=h 4 463 302.88(16) kHz 3.6 × 10−8 LAMPF-82 Mariam (1981) and Mariam et al. (1982) XVII.B
D30 ΔEMu=h 4 463 302 765(53) Hz 1.2 × 10−8 LAMPF-99 Liu et al. (1999) XVII.B
D31 δMu=h 0(85) Hz [1.9 × 10−8] theory XVII.A

Input data relevant for the magnetic moments of light nuclei
D32 μp=μN 2.792 847 344 62(82) 2.9 × 10−10 UMZ-17 Schneider et al. (2017) XV
D33 μeðHÞ=μpðHÞ −658.210 7058ð66Þ 1.0 × 10−8 MIT-72 Sec. III.C.3 of Mohr and Taylor (2000) XIV.D
D34 μdðDÞ=μeðDÞ −4.664 345 392ð50Þ × 10−4 1.1 × 10−8 MIT-84 Sec. III.C.4 of Mohr and Taylor (2000) XIV.D
D35 μeðHÞ=μ0p −658.215 9430ð72Þ 1.1 × 10−8 MIT-77 Sec. III.C.6 of Mohr and Taylor (2000) XIV.D
D36 μ0h=μ

0
p −0.761 786 1313ð33Þ 4.3 × 10−9 NPL-93 Flowers, Petley, and Richards (1993) XIV.D

D37 μn=μ0p −0.684 996 94ð16Þ 2.4 × 10−7 ILL-79 Sec. III.C.8 of Mohr and Taylor (2000) XIV.D
D38 μpðHDÞ=μdðHDÞ 3.257 199 531(29) 8.9 × 10−9 StPtrsb-03 Neronov and Karshenboim (2003) XIV.D
D39 μpðHDÞ=μdðHDÞ 3.257 199 514(21) 6.6 × 10−9 WarsU-12 Garbacz et al. (2012) XIV.D
D40 μpðHDÞ=μdðHDÞ 3.257 199 516(10) 3.1 × 10−9 StPtrsb-12 Neronov and Seregin (2012) XIV.D
D41 μtðHTÞ=μpðHTÞ 1.066 639 8933(21) 2.0 × 10−9 StPtrsb-11 Neronov and Aleksandrov (2011) XIV.D
D42 σdp 20.20ð2Þ × 10−9 Puchalski, Komasa, and Pachucki (2015) XIV.C
D43 σtp 24.14ð2Þ × 10−9 Puchalski, Komasa, and Pachucki (2015) XIV.C
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linewidth of the resonant Lorentzian signal was narrowed
by reducing magnetic-field inhomogeneity, and an
improved detector for the cyclotron frequency doubled
the data acquisition rate. The relative uncertainty of the
new result comprises 2.7 and 1.2 parts in 1010 from
statistical and systematic effects, respectively. The two
largest components contributing to the systematic uncer-
tainty are due to limits on line-shape fitting and on the
characterization of a relativistic shift and have been added
linearly to account for correlations. The total correction
from systematic effects is −1.3 parts in 1010.
The observational equation for ωs=ωc and thus μp=μN is

μp
μN

≐ −½1þ aeðthÞ þ δthðeÞ�
ArðpÞ
ArðeÞ

μp
μe

ð148Þ

using the definition of μe in Eq. (45). The quantities δthðeÞ,
ArðeÞ, ArðpÞ, and μe=μp are adjusted constants. The theoretical
expression for the electron anomaly aeðthÞ is mainly a
function of adjusted constant α.
The input datum has identifier UMZ-17 and is item D32 in

Table XXI. Its observational equation can be found in
Table XXVI.

XVI. MUON MAGNETIC-MOMENT ANOMALY

The muon magnetic-moment anomaly aμ and thus muon
g-factor gμ ¼ −2ð1þ aμÞ were measured in 2006. A theo-
retical expression for aμ is also available and has steadily
been improved since this measurement. Only the measured
value of the muon anomaly, however, is included in the 2018
adjustment of the constants due to the disagreement between
theory and experiment. The measurement of aμ and the theory
are summarized in the following sections.

A. Measurement of the muon anomaly

The 2006 determination of aμ at Brookhaven National
Laboratory (BNL), USA has been discussed in the past
five CODATA reports. The quantity measured is the
anomaly difference frequency ωa ¼ ωs − ωc, where ωs ¼
jgμjðe=2mμÞB is the muon spin-flip (or precession) frequency
in the applied magnetic flux density B and ωc ¼ ðe=mμÞB is
the muon cyclotron frequency. The flux density is eliminated
from these expressions by determining its value from a
measurement of the precession frequency of the proton in
water in the same apparatus combined with the proton
shielding correction in water. This leads to a measurement

of proton precession frequency ωp ¼ 2μpB=ℏ, where the
magnitude of the proton magnetic moment, μp, and the g-
factor of the muon are defined in Sec. XIV.A.
The value of R̄ ¼ ωa=ωp is reported by the BNL exper-

imentalists. From Table XVof Bennett et al. (2006), we have

R̄ ¼ 0.003 707 2063ð20Þ ½5.4 × 10−7�: ð149Þ

It is input datum D26 in Table XXI with identification
BNL-06. The corresponding observational equation is

R̄ ≐ aμ
eℏ=ð2mμÞ

μp
≐

aμ
1þ aeðthÞ þ δthðeÞ

me

mμ

μe
μp

; ð150Þ

where the right-hand side of the equation is explicitly
expressed in terms of adjusted constants aμ, me=mμ, μe=μp,
and additive correction δthðeÞ for the theoretical electron
anomaly aeðthÞ. The anomaly aeðthÞ is mainly a function
of the adjusted constant α.
In practice, the muon anomaly can also be calculated from

aμ ¼
R̄

jμμ=μpj − R̄
; ð151Þ

as the uncertainty of the magnetic-moment ratio μμ=μp is
much smaller than that of R̄. The 2018 CODATA recom-
mended value of the muon anomaly is

aμ ¼ 1.165 920 89ð63Þ × 10−3: ð152Þ

B. Theory of the muon anomaly

The muon magnetic-moment anomaly can be expressed as

aμðthÞ ¼ aμðQEDÞ þ aμðweakÞ þ aμðhadÞ; ð153Þ

where terms denoted by “QED,” “weak,” and “had” account
for the purely quantum electrodynamic, predominantly
electroweak, and predominantly hadronic (that is, with
hadrons in intermediate states) contributions, respectively.
The QED contribution may be written as

aμðQEDÞ ¼
X∞
n¼1

Cð2nÞ
μ

�
α

π

�
n
; ð154Þ

where

Cð2nÞ
μ ¼Að2nÞ

1 þAð2nÞ
2 ðxμeÞþAð2nÞ

2 ðxμτÞþAð2nÞ
3 ðxμe;xμτÞ ð155Þ

with mass-independent coefficients Að2nÞ
1 given by Eqs. (51)–

(55) and functions Að2nÞ
2 ðxÞ and Að2nÞ

3 ðx; yÞ evaluated at mass
ratios mμ=mX for lepton X ¼ e or τ. The expression for the
QED contribution has the same functional form as that for
the electron anomaly described in Sec. VIII, except that the

mass-dependent terms Að2nÞ
2 ðxÞ are evaluated at different mass

ratios, while contributions due to Að2nÞ
3 ðx; yÞ are negligibly

small for the electron anomaly. Contributions from the mass-
dependent terms are generally more important for the muon
anomaly.

TABLE XXII. Correlation coefficients rðxi; xjÞ > 0.0001 among
the input data in Table XXI.

rðD5;D6Þ ¼ 0.1004 rðD5;D11Þ ¼ 0.0495
rðD5;D18Þ ¼ −0.0070 rðD5;D19Þ ¼ 0.0657
rðD6;D11Þ ¼ 0.0402 rðD6;D18Þ ¼ −0.0070
rðD6;D19Þ ¼ 0.0602 rðD7;D10Þ ¼ 0.3473
rðD8;D23Þ ¼ 0.9998 rðD9;D13Þ ¼ 0.7994
rðD11;D18Þ ¼ −0.0198 rðD11;D19Þ ¼ 0.1934
rðD18;D19Þ ¼ −0.1340 rðD27;D29Þ ¼ 0.2267
rðD28;D30Þ ¼ 0.1946
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The mass-dependent functions Að2Þ
2 ðxÞ, Að2Þ

3 ðxÞ, and

Að4Þ
3 ðx; yÞ are zero. The remaining nonzero mass-dependent

coefficients computed at the relevant mass ratios are given in
TableXXIV.Their fractional contributions to themuonanomaly
are given in Table XXV. Only four of the mass-dependent QED
corrections contribute significantly to the theoretical value for
the muon anomaly. Finally, aμðQEDÞ based on the 2018
recommended value of α and lepton mass ratios is

aμðQEDÞ ¼ 0.00116584718897ð84Þ ½7.2× 10−10�: ð156Þ

The primarily electroweak contribution is (Czarnecki,
Marciano, and Vainshtein, 2003; Gnendiger, Stöckinger,
and Stöckinger-Kim, 2013)

aμðweakÞ ¼ 154ð1Þ × 10−11 ð157Þ

and contains both the leading term and also some higher-order
corrections.
Five terms of the hadronic correction of the muon anomaly

have been computed. They are

aμðhadÞ ¼ aLO;VPμ ðhadÞ þ aNLO;VPμ ðhadÞ þ aNNLO;VPμ ðhadÞ
þ aLLμ ðhadÞ þ aNLO;LLμ ðhadÞ þ � � � ; ð158Þ

corresponding to leading-order (LO), next-to-leading-order
(NLO), and next-to-next-to-leading-order (NNLO) vacuum-
polarization corrections and hadronic light-by-light (LL), and
higher-order light-by-light (NLO,LL) scattering terms, respec-
tively. Their values are

TABLE XXIII. Observational equations for input data on H/D spectroscopy, muonic-H and -D Lamb shifts, and electron-proton or deuteron
scattering given in Tables X, VIII, and XVIII as functions of adjusted constants. Labels in the first column correspond to those defined in the
tables with input data. Subscript X is H or D for hydrogen or deuterium, respectively. The symbol ≐ is defined in Sec. III. Energy levels of
hydrogenic atoms, EXðnlj;ΓXÞ, are discussed in Sec. VII.A. Here, the symbol ΓX represents the six adjusted constants
R∞; α; ArðeÞ; me=mμ; ArðNÞ, and rN such that when X ¼ H nucleus N ¼ p, the proton, and when X ¼ D nucleus N ¼ d, the deuteron.
The Lamb shift for muonic atoms, ΔELSðμXÞ, is discussed in Sec. XII. The last two entries are observational equations for nuclear-charge radii
as obtained from electron-proton and electron-deuteron scattering data discussed in Sec. XIII.

Input data Observational equation

A6–A8, A10–A19, A22, A23, A26–A29 νXðn1l1j1 − n2l2j2Þ ≐
h
EXðn2l2j2 ;ΓXÞ þ δXðn2l2j2Þ
− EXðn1l1j1 ;ΓXÞ − δXðn1l1j1Þ

i
=h

A1–A4, A20, A21, A24, A25 νXðn1l1j1 − n2l2j2Þ − 1
4
νXðn3l3j3 − n4l4j4Þ ≐

n
EXðn2l2j2 ;ΓXÞ þ δXðn2l2j2Þ
− EXðn1l1j1 ;ΓXÞ − δXðn1l1j1Þ
− 1

4

h
EXðn4l4j4 ;ΓXÞ þ δXðn4l4j4Þ

− EXðn3l3j3 ;ΓXÞ − δXðn3l3j3Þ
io

=h

A5 νDð1S1=2 − 2S1=2Þ − νHð1S1=2 − 2S1=2Þ ≐
n
EDð2S1=2;ΓDÞ þ δDð2S1=2Þ
− EDð1S1=2;ΓDÞ − δDð1S1=2Þ
−
h
EHð2S1=2;ΓHÞ þ δHð2S1=2Þ

− EHð1S1=2;ΓHÞ − δHð1S1=2Þ
io

=h

A9 νHð2S1=2 − 4P; centroidÞ ≐
n
ðEHð4P1=2;ΓHÞ þ δHð4P1=2ÞÞ=3
þ 2ðEHð4P3=2;ΓHÞ þ δHð4P3=2ÞÞ=3
− EHð2S1=2;ΓHÞ − δHð2S1=2Þ

o
=h

B1–B25 δXðnljÞ ≐ δXðnljÞ
C1–C6 ΔELSðμXÞ ≐ E0X þ E2Xr2N þ δthðμXÞ
C7, C8 δELSðμXÞ ≐ δthðμXÞ
C9 rp ≐ rp
C10 rd ≐ rd

TABLE XXIV. Mass-dependent functions Að2nÞ
2 ðxÞ, Að2nÞ

3 ðx; yÞ, and summed Cð2nÞ
μ coefficients for the QED contributions to the muon

anomaly based on the 2018 recommended values of lepton mass ratios. The functions are evaluated at mass ratios xμe ≡mμ=me and/or
xμτ ≡mμ=mτ.

n Að2nÞ
2 ðxμeÞ Að2nÞ

2 ðxμτÞ Að2nÞ
3 ðxμe; xμτÞ Cð2nÞ

μ

1 0 0 0 0.5
2 1.094 258 3098(72) 0.000 078 076(10) 0 0.765 857 420(10)
3 22.868 379 99(17) 0.000 360 599(86) 0.000 527 738(71) 24.050 509 78(16)
4 132.6852(60) 0.042 4928(40) 0.062 72(4) 130.8782(60)
5 742.18(87) −0.068ð5Þ 2.011(10) 750.80(89)
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aLO;VPμ ðhadÞ ¼ 6932.6ð24.6Þ × 10−11; ð159Þ

aNLO;VPμ ðhadÞ ¼ −98.2ð4Þ × 10−11 ð160Þ

from Keshavarzi, Nomura, and Teubner (2018) based on
eþ−e− annihilation data. Davier et al. (2017) and Jegerlehner
(2018) gave results that are consistent but slightly less
accurate. Of these three publications, only Jegerlehner
(2018) has included tau-lepton-decay data. The next-to-
next-to-leading-order correction is

aNNLO;VPμ ðhadÞ ¼ 12.4ð1Þ × 10−11 ð161Þ

from Kurz et al. (2014b). Light-by-light corrections are

aLLμ ðhadÞ ¼ 103ð29Þ × 10−11 ð162Þ

from Jegerlehner (2018) and

aNLO;LLμ ðhadÞ ¼ 3.0ð2.0Þ × 10−11 ð163Þ

from Colangelo et al. (2014). The combined hadronic con-
tribution is then

aμðhadÞ ¼ 6967ð59Þ × 10−11: ð164Þ

Based on the 2018 recommended value of α and lepton
mass ratios,

aμðthÞ ¼ 1.165 918 13ð38Þ × 10−3 ð165Þ

for the theoretically predicted value of aμ with standard
uncertainty

u½aμðthÞ� ¼ 38 × 10−11 ¼ 3.3 × 10−7aμ: ð166Þ

The largest and equally important contributions to the uncer-
tainty of aμðthÞ are from aLO;VPμ ðhadÞ and aLLμ ðhadÞ. By
comparison, the uncertainty of aμðQEDÞ is negligible.

C. Analysis of experiment and theory for the muon anomaly

Figure 7(a) compares three recent determinations of
aLO;VPμ ðhadÞ based on electron-positron annihilation data with

that mentioned in the 2014 CODATA report, i.e., the value
from Hagiwara et al. (2011). Although the four values are
consistent, the spread in values is rather large given that they
are based on the same input data. This suggests that uncer-
tainties remain underestimated. Nevertheless, for this discus-
sion we have chosen the value given by Keshavarzi, Nomura,
and Teubner (2018), because it has the smallest uncertainty.
In addition, Fig. 7 shows the results of two independent

first-principle lattice-QCD evaluations of aLO;VPμ ðhadÞ, both
published in 2018. We have

aLO;VPμ ðhadÞ ¼ 7111ð75Þð174Þ × 10−11 ð167Þ

from Borsanyi et al. (2018) and

aLO;VPμ ðhadÞ ¼ 7154ð163Þð92Þ × 10−11 ð168Þ

from Blum et al. (2018). The first and second numbers in
parentheses correspond to the statistical and systematic
uncertainties, respectively. The systematic uncertainty is
dominated by finite-volume artifacts. In Fig. 7, the two
uncertainties are added in quadrature. Blum et al. (2018)
also describe a model that merges data from electron-positron
annihilation data with their lattice-QCD evaluation. This leads
to a more accurate determination of aLO;VPμ ðhadÞ with the
value

TABLE XXV. Fractional contribution of mass-dependent functions
Að2nÞ
2 ðxÞ and Að2nÞ

3 ðx; yÞ for the QED contributions to the muon
anomaly based on the 2018 recommended values for α and lepton
mass ratios. Fractional contributions are defined as Að2nÞ

j ×
ðα=πÞn=aμðthÞ for j ¼ 2 or 3 and the relative standard uncertainty
of aμðthÞ is 3.3 × 10−7. The functions are evaluated at mass ratios
xμe ≡mμ=me and/or xμτ ≡mμ=mτ.

n Að2nÞ
2 ðxμeÞ Að2nÞ

2 ðxμτÞ Að2nÞ
3 ðxμe; xμτÞ

2 5.06 × 10−3 3.61 × 10−7

3 2.46 × 10−4 3.88 × 10−9 5.67 × 10−9

4 3.31 × 10−6 1.06 × 10−9 1.57 × 10−9

5 4.30 × 10−8 −3.94 × 10−12 1.17 × 10−10
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Hagiwara et al. (2011)

FIG. 7. Comparison of recent determinations of the leading-
order hadronic (LO) vacuum-polarization [panel (a)] and light-
by-light (LL) [panel (b)] contributions to the muon anomaly.
Error bars are one-standard-deviation uncertainties. The LO,VP,
and LL contributions limit the uncertainty of aμðthÞ. The
horizontal interval of the two panels is the same so that
uncertainties can be compared. From top to bottom, data are
from Hagiwara et al. (2011), Davier et al. (2017), Jegerlehner
(2018), Keshavarzi, Nomura, and Teubner (2018), Borsanyi et al.
(2018), and Blum et al. (2018) in panel (a) and from Jegerlehner
and Nyffeler (2009) and Jegerlehner (2018) in panel (b).
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aLO;VPμ ðhadÞjhybrid ¼ 6925ð27Þ × 10−11 ð169Þ

consistent in both value and uncertainty with data solely based
on electron-positron annihilation data.
Figure 7(b) compares two evaluations of the leading-order

light-by-light correction. Separated by almost ten years in
publication date, the value has only slightly improved. The
newest is considered here. As in the 2014 CODATA report,
based on the analyses of Dorokhov, Radzhabov, and
Zhevlakov (2014a, 2014b), Nyffeler (2014), and Adikaram
et al. (2015), not shown in the figure, we note that aLLμ ðhadÞ is
model dependent and that a reliable estimate might still be
missing.
The experimental and theoretical values for the muon

magnetic-moment anomaly, i.e., Eqs. (152) and (165), respec-
tively, are compared in Fig. 8. The difference between
experiment and theory is just under four times the uncertainty
of the difference. This is larger than in the 2014 CODATA
report, as both aLO;VPμ ðhadÞ and aLLμ ðhadÞ have become
smaller.
An expansion of only the uncertainty of aμðthÞ to attempt to

account for the spread in the values of aLO;VPμ ðhadÞ and
aLLμ ðhadÞ would significantly reduce its contribution in a least-
squares adjustment that includes both input data R̄ and aμðthÞ.
Expanding the uncertainties of aμðthÞ and aμðexpÞ to reduce
the residual for both input data to less than two leads to a
recommended value that ceases to be a useful reference value
for future comparisons of theory and experiment. For all these
reasons, the Task Group chose not to include aμðthÞ in the
2018 adjustment and to base the 2018 recommended value on
experiment only.

XVII. ELECTRON-TO-MUON MASS RATIO AND
MUON-TO-PROTON MAGNETIC-MOMENT RATIO

Muonium (Mu) is an atom consisting of a (positively
charged) antimuon and a (negatively charged) electron.
Measurements of two muonium ground-state hyperfine tran-
sition energies in a strong magnetic flux density combined
with theoretical expressions for these energies provide infor-
mation on the electron-to-muon mass ratio, me=mμ, as well as
the antimuon-to-proton magnetic-moment ratio, μμþ=μp. Here,
the proton magnetic moment only appears because the applied
magnetic field or flux density is found by “replacing” the

muonium with a proton in the experimental apparatus and
measuring the transition frequency ωp of its precessing spin.
(More precisely, replacing muonium with a liquid-water
sample, measuring the proton spin-precession frequency in
water, and accounting for a shielding correction.)
In the remainder of this section, we summarize the

theoretical determination of the zero-flux-density muonium
hyperfine splitting (HFS) and the experimental measurements
at field fluxes between one and two tesla. Results of relevant
calculations and measurements are given along with refer-
ences to new work; references to the original literature used in
earlier CODATA adjustments are not repeated. We finish with
an analysis of the data.

A. Theory of the muonium ground-state hyperfine splitting

The theoretical expression for the muonium hyperfine
energy splitting absent a magnetic field may be factored into

ΔEMuðthÞ ¼ ΔEFF ð170Þ

with the Fermi energy formula

ΔEF ¼ 16

3
hcR∞Z3α2

me

mμ

�
1þ me

mμ

�
−3
; ð171Þ

which contains the main dependence on fundamental con-
stants, and a function F ¼ 1þ α=π þ � � � that only depends
weakly on them. (Recall Eh ¼ 2R∞hc ¼ α2mec2.) The charge
of the antimuon is specified by Ze rather than e in order to
identify the source of terms contributing to ΔEMuðthÞ.
The Fermi formula in Eq. (171) is expressed in terms of our

adjusted constants R∞, α, and me=mμ. The relative uncer-
tainties of R∞ and α are much smaller than those for the
measured ΔEMu. Hence, a measurement of ΔEMu determines
the electron-to-muon mass ratio.
The general expression for the hyperfine splitting and thus

also F is

ΔEMuðthÞ ¼ ΔED þ ΔErad þ ΔErec þ ΔEr-r þ ΔEweak

þ ΔEhad; ð172Þ

where subscripts D, rad, rec, r-r, weak, and had denote the
Dirac, radiative, recoil, radiative-recoil, electroweak, and
hadronic contributions to the hyperfine splitting, respectively.
The Dirac equation yields

ΔED ¼ΔEFð1þaμÞ
�
1þ 3

2
ðZαÞ2þ 17

8
ðZαÞ4þ� � �

�
; ð173Þ

where aμ is the muon magnetic-moment anomaly. Radiative
corrections are

ΔErad ¼ ΔEFð1þ aμÞ
X∞
n¼1

Dð2nÞðZαÞ
�
α

π

�
n
; ð174Þ

where functions Dð2nÞðxÞ are contributions from n virtual
photons. The leading term is

-6 -5 -4 -3 -2 -1 0 1 2
(a  - a [exp])/u(a [exp])

                       experiment,
2018 recommended value

theory

FIG. 8. Comparison of the experimental and theoretical value
for the muon anomaly. Values have been scaled by the uncertainty
of the 2018 recommended value.
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TABLE XXVI. Observational equations for input data in Tables XXI and XXVII as functions of the adjusted constants.
The data determine the fine-structure constant, electron and muon masses and anomalies, masses and magnetic moments of
light nuclei, as well as the lattice spacing of an ideal natural Si crystal and x-ray units. The labels in the first column
correspond to those in the first column of Tables XXI and XXVII. For simplicity, the lengthier functions are not explicitly
given. See Sec. III for an explanation of the symbol ≐.

Input data Observational equation Sec.

D1 aeðexpÞ ≐ aeðthÞ þ δthðeÞ VIII

D2 δe ≐ δthðeÞ VIII

D3, D4 h
mðXÞ ≐

ArðeÞ
ArðXÞ

cα2

2R∞

X

D5, D6, D18 ArðXÞ ≐ ArðXÞ IX

D7 ωsð12C5þÞ
ωcð12C5þÞ≐−

geð12C5þÞþδthðCÞ
10ArðeÞ

½12−5ArðeÞþΔEBð12C5þÞα2ArðeÞ=2R∞hc�
XI.C

D8, D12, D21–D23 ΔEBðXnþÞ ≐ ΔEBðXnþÞ IX

D9 δC ≐ δthðCÞ XI.C

D10 ωsð28Si13þÞ
ωcð28Si13þÞ

≐ −
geð28Si13þÞ þ δthðSiÞ

26ArðeÞ
Arð28Si13þÞ

XI.C

D11 Arð28SiÞ ≐ Arð28Si13þÞ þ 13ArðeÞ − ΔEBð28Si13þÞα2ArðeÞ=2R∞hc IX

D13 δSi ≐ δthðSiÞ XI.C

D14 ωcðdÞ
ωcð12C6þÞ ≐

12 − 6ArðeÞ þ ΔEBð12C6þÞα2ArðeÞ=2R∞hc
6ArðdÞ

IX

D15 ωcð12C6þÞ
ωcðpÞ

≐
6ArðpÞ

12 − 6ArðeÞ þ ΔEBð12C6þÞα2ArðeÞ=2R∞hc

IX

D16 ωcðtÞ
ωcð3HeþÞ

≐
ArðhÞ þ ArðeÞ − ΔEIð3HeþÞα2ArðeÞ=2R∞hc

ArðtÞ
IX

D17 ωcðHDþÞ
ωcð3HeþÞ

≐
ArðhÞ þ ArðeÞ − EIð3HeþÞα2ArðeÞ=2R∞hc

ArðpÞ þ ArðdÞ þ ArðeÞ − ΔEIðHDþÞα2ArðeÞ=2R∞hc

IX

D19 Arð1HÞ ≐ ArðpÞ þ ArðeÞ − ΔEBð1HþÞα2ArðeÞ=2R∞hc IX

D20 Arð4HeÞ ≐ ArðαÞ þ 2ArðeÞ − ΔEBð4He2þÞα2ArðeÞ=2R∞hc IX

D24, D25 ΔEIðXþÞ ≐ ΔEIðXþÞ IX

D26 R̄ ≐ −
aμ

1þ aeðthÞ þ δthðeÞ
me

mμ

μe
μp

XVI.A

D27, D28 EðωpÞ ≐ Eðωp;R∞; α;
me

mμ
; aμ;

μe
μp

; δthðeÞ; δthðMuÞÞ XVII.B

D29, D30 ΔEMu ≐ ΔEMuðth;R∞; α;
me

mμ
; aμÞ þ δthðMuÞ XVII.A

D31 δMu ≐ δthðMuÞ XVII.A
D32 μp

μN
≐ −ð1þ aeðthÞ þ δthðeÞÞ

ArðpÞ
ArðeÞ

μp
μe

XV

D33 μeðHÞ
μpðHÞ

≐
geðHÞ
ge

ðgpðHÞ
gp

Þ
−1 μe

μp

XIV.D

D34 μdðDÞ
μeðDÞ

≐
gdðDÞ
gd

ðgeðDÞ
ge

Þ
−1 μd

μe

XIV.D

D35 μeðHÞ
μ0p

≐
geðHÞ
ge

μe
μ0p

XIV.D

D36 μ0h
μ0p

≐
μ0h
μ0p

XIV.D

D37 μn
μ0p

≐
μn
μ0p

XIV.D

D38–D40 μpðHDÞ
μdðHDÞ

≐ ½1þ σdp�
μp
μe

μe
μd

XIV.D

D41 μtðHTÞ
μpðHTÞ

≐
1

1þ σtp

μt
μp

XIV.D

D42, D43 σNN0 ≐ σNN0 XIV.C
E1–E4

1 −
d220ðYÞ
d220ðXÞ

≐ 1 −
d220ðYÞ
d220ðXÞ

XVIII

(Table continued)
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Dð2ÞðxÞ ¼ Að2Þ
1 þ

�
ln 2 −

5

2

�
πxþ

�
−
2

3
ln2ðx−2Þ

þ
�
281

360
−
8

3
ln 2

�
lnðx−2Þ þ 16.9037…

�
x2

þ
��

5

2
ln 2 −

547

96

�
lnðx−2Þ

�
πx3 þ GðxÞx3; ð175Þ

where Að2Þ
1 ¼ 1=2, as in Eq. (51). The function GðxÞ accounts

for all higher-order contributions in powers of x; it can be
divided into self-energy (SE) and vacuum-polarization (VP)
contributions, GðxÞ ¼ GSEðxÞ þ GVPðxÞ. Yerokhin and
Jentschura (2008, 2010) and Karshenboim, Ivanov, and
Shabaev (1999, 2000) have calculated the one-loop self-
energy and vacuum-polarization contributions for the muo-
nium HFS with x ¼ α. Their results are

GSEðαÞ ¼ −13.8308ð43Þ ð176Þ
and

GVPðαÞ ¼ 7.227ð9Þ; ð177Þ

where the latter uncertainty is meant to account for neglected
higher-order Uehling-potential terms; it corresponds to
energy uncertainties less than h × 0.1 Hz, and is thus entirely
negligible.
For Dð4ÞðxÞ, we have

Dð4ÞðxÞ ¼ Að4Þ
1 þ 0.770 99ð2Þπxþ

�
−
1

3
ln2ðx−2Þ

− 0.6390… × lnðx−2Þ þ 10ð2.5Þ
�
x2 þ � � � ; ð178Þ

where Að4Þ
1 is given in Eq. (52). The next term is

Dð6ÞðxÞ ¼ Að6Þ
1 þ � � � ; ð179Þ

where the leading contribution Að6Þ
1 is given in Eq. (53), but

only partial results of relative order Zα have been calculated
(Eides and Shelyuto, 2007). Higher-order functions Dð2nÞðxÞ
with n > 3 are expected to be negligible.
The recoil contribution is

ΔErec ¼ ΔEF
me

mμ

�
−

3

1 − ðme=mμÞ2
ln

�
mμ

me

�
Zα
π

þ 1

ð1þme=mμÞ2
�
ln ðZαÞ−2 − 8 ln 2þ 65

18

þ
�
9

2π2
ln2

�
mμ

me

�
þ
�
27

2π2
− 1

�
ln

�
mμ

me

�
þ 93

4π2
þ 33ζð3Þ

π2
−
13

12
− 12 ln 2

�
me

mμ

�
ðZαÞ2

þ
�
−
3

2
ln

�
mμ

me

�
lnðZαÞ−2 − 1

6
ln2ðZαÞ−2 þ

�
101

18
− 10 ln 2

�
lnðZαÞ−2 þ 40ð10Þ

� ðZαÞ3
π

�
þ � � � : ð180Þ

The leading-orderOðΔEFα
2Þ radiative-recoil contribution is

ΔEr-r ¼ ΔEF

�
α

π

�
2 me

mμ

��
−2 ln2

�
mμ

me

�
þ 13

12
ln

�
mμ

me

�

þ 21

2
ζð3Þ þ π2

6
þ 35

9

�
þ
�
4

3
ln2α−2

þ
�
16

3
ln 2 −

341

180

�
ln α−2 − 40ð10Þ

�
πα

þ
�
−
4

3
ln3

�
mμ

me

�
þ 4

3
ln2

�
mμ

me

��
α

π

�

− ΔEFα
2

�
me

mμ

�
2
�
6 ln 2þ 13

6

�
þ � � � ; ð181Þ

where, for simplicity, the explicit dependence on Z is not
shown. Single-logarithmic and nonlogarithmic three-loop
radiative-recoil corrections of OðΔEFα

3Þ are (Eides and
Shelyuto, 2014)

ΔEF

�
α

π

�
3 me

mμ

��
−6π2 ln 2þ π2

3
þ 27

8

�
ln
mμ

me
þ 68.507ð2Þ

�

¼ h × −30.99 Hz: ð182Þ
Uncalculated remaining terms of the same order as those
included in Eq. (182) have been estimated by Eides and
Shelyuto (2014) to be about h × 10 Hz to h × 15 Hz.
Additional radiative-recoil corrections have been calculated,
but are negligibly small, less than h × 0.5 Hz.

TABLE XXVI. (Continued)

Input data Observational equation Sec.

E5–E13 d220ðXÞ
d220ðYÞ

− 1 ≐
d220ðXÞ
d220ðYÞ

− 1
XVIII

E14–E17 d220ðXÞ ≐ d220ðXÞ XVIII

E18, E19 λðCuKα1Þ
d220ðXÞ

≐
1537.400 xuðCuKα1Þ

d220ðXÞ
XVIII

E20 λðWKα1Þ
d220ðNÞ

≐
0.209 010 0 Å�

d220ðNÞ
XVIII

E21 λðMoKα1Þ
d220ðNÞ

≐
707.831 xuðMoKα1Þ

d220ðNÞ
XVIII
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The electroweak contribution due to the exchange of a Z0

boson is (Eides, 1996)

ΔEweak=h ¼ −65 Hz; ð183Þ

while for the hadronic vacuum-polarization contribution we
have

ΔEhad=h ¼ 237.7ð1.5Þ Hz: ð184Þ

This hadronic contribution combines the result of Nomura and
Teubner (2013) with a newly computed h × 4.97ð19Þ Hz
contribution from Shelyuto, Karshenboim, and Eidelman
(2018). A negligible contribution (≈h × 0.0065 Hz) from
the hadronic light-by-light correction has been given by
Karshenboim, Shelyuto, and Vainshtein (2008).
The uncertainty of ΔEMuðthÞ in Eq. (172) is determined,

from the largest to smallest component, by those in ΔErec,
ΔEr-r, ΔErad, and ΔEhad. The h × 1.5 Hz uncertainty in the
latter is only of marginal interest.
For ΔErec, the total uncertainty is h × 64 Hz and has three

components. They are h × 53 Hz from twice the uncertainty
10 of the number 40 in Eq. (180) as discussed in the 2002
CODATA adjustment, h × 34 Hz due to a possible recoil
correction of order ΔEFðme=mμÞ × ðZαÞ3 lnðme=mμÞ, and,
finally, h × 6 Hz to reflect a possible recoil term of
order ΔEFðme=mμÞ × ðZαÞ4ln2ðZαÞ−2.
The uncertainty in ΔEr-r is h × 55 Hz, with h × 53 Hz due

to twice the uncertainty 10 of the number −40 in Eq. (181) as
above, and h × 15 Hz as discussed in connection with
Eq. (182). The uncertainty in ΔErad is h × 5 Hz and consists
of two components: h × 4 Hz from an uncertainty of 1 in
GVPðαÞ due to the uncalculated contribution of order αðZαÞ3,
and h × 3 Hz from the uncertainty 2.5 of the number 10 in the
function Dð4ÞðxÞ.
The final uncertainty in ΔEMuðthÞ is then

u½ΔEMuðthÞ�=h ¼ 85 Hz: ð185Þ

For the least-squares calculations, we use the observational
equations

ΔEMu ≐ ΔEMuðthÞ þ δthðMuÞ ð186Þ

and

δMu ≐ δthðMuÞ; ð187Þ

where δthðMuÞ accounts for the uncertainty of the theoretical
expression and is taken to be an adjusted constant. Based on
Eq. (185), its corresponding input datum in the 2018 adjust-
ment is δMu ¼ 0ð85Þ Hz. The input data ΔEMu are discussed
later. The theoretical hyperfine splitting ΔEMuðthÞ is mainly a
function of the adjusted constants R∞, α, and me=mμ. Finally,
the covariance between ΔEMu and δMu is zero.

B. Measurements of muonium transition energies

The two most precise determinations of muonium hyperfine
transition energieswere carried out by researchers at theMeson
Physics Facility at Los Alamos (LAMPF), New Mexico, USA
and published in 1982 and 1999, respectively. These transition
energies are compared to differences between eigenvalues of
the Breit-Rabi Hamiltonian (Breit and Rabi, 1931; Millman,
Rabi, and Zacharias, 1938) modified for muonium using a
magnetic flux density determined from the free-proton NMR
frequency measured in the apparatus. The experiments were
reviewed in the 1998 CODATA adjustment.
Data reported in 1982 by Mariam (1981) and Mariam et al.

(1982) are

ΔEMu=h ¼ 4 463 302.88ð16Þ kHz ½3.6 × 10−8� ð188Þ

for the hyperfine splitting and

EðωpÞ=h ¼ 627 994.77ð14Þ kHz ½2.2 × 10−7� ð189Þ

for the difference of two transition energies with correlation
coefficient

r½ΔEMu; EðωpÞ� ¼ 0.227: ð190Þ

In fact, ΔEMu and EðωpÞ are the sum and difference of two
measured transition energies, ℏωp ¼ 2μpB is the free-proton
NMR transition energy, and only EðωpÞ depends on ωp. In this
experiment, ℏωp ¼ h × 57.972 993 MHz at its 1.3616 T
magnetic flux density.
The data reported in 1999 by Liu et al. (1999) are

ΔEMu=h ¼ 4 463 302 765ð53Þ Hz ½1.2 × 10−8�; ð191Þ

EðωpÞ=h ¼ 668 223 166ð57Þ Hz ½8.6 × 10−8� ð192Þ

with correlation coefficient

r½ΔEMu; EðωpÞ� ¼ 0.195 ð193Þ

and ℏωp ¼ h × 72.320 000 MHz for the proton transition
energy in a flux density of approximately 1.7 T.
The observational equations are Eq. (186) and

EðωpÞ≐−ðWe− þWμþÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔEMuðthÞþδthðMuÞ�2þðWe− −WμþÞ2

q
; ð194Þ

where Wl ¼ −½μlðMuÞ=μp�ℏωp. Explicitly expressing We−

and Wμþ in terms of adjusted constants then yields

We− ¼ −
geðMuÞ

ge

μe−

μp
ℏωp ð195Þ

and

Wμþ ¼ gμðMuÞ
gμ

1þ aμ
1þ aeðthÞ þ δthðeÞ

me

mμ

μe−

μp
ℏωp: ð196Þ
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Here, we have used the fact that μlðMuÞ ¼ glðMuÞeℏ=4ml
for the magnitude of the magnetic moment of lepton l in
muonium (see Secs. VIII and XIV.A), jglj ¼ 2ð1þ alÞ, and
crucially gμþ ¼ −gμ−. The g-factor ratios geðMuÞ=ge and
gμðMuÞ=gμ are given in Table XX.
The adjusted constants in Eq. (186) and Eqs. (194)–(196)

are the magnetic-moment anomaly aμ, mass ratio me=mμ,
magnetic-moment ratio μe−=μp, and additive constants
δthðMuÞ and δthðeÞ. The latter two constants account for
uncomputed theoretical contributions to ΔEMuðthÞ and aeðthÞ,
respectively. Finally, ΔEMuðthÞ is mainly a function of
adjusted constants me=mμ, R∞, and α; aeðthÞ is mainly a
function of R∞ and α. The accurately measured or computed
ℏωp and ratios glðMuÞ=gl are treated as exact in our least-
squares adjustment.
It is worth noting that in Eq. (194) the energyWe− > 0, and

at the flux densities used in the experiments jWe− j ∼ ΔEMuðthÞ
and jWμþ j ≪ jWe− j. Consequently, the right-hand side of
Eq. (194) only has a weak dependence on ΔEMuðthÞ and
the corresponding input datum does not significantly constrain
ΔEMuðthÞ and thus me=mμ in the adjustment.
For ease of reference, the experimental and theoretical input

data for muonium hyperfine splittings are summarized in
Table XXI and given labels D27 through D31. Observational
equations are summarized in Table XXVI.

C. Analysis of the muonium hyperfine splitting and mass
ratio mμ=me

The 2018 recommended value for the muonium hyperfine
splitting is

ΔEMuðthÞ þ δthðMuÞ
¼ h × 4 463 302 776ð51Þ Hz ½1.1 × 10−8�; ð197Þ

which is consistent in both value and uncertainty with the
most accurately measured value of Eq. (191). More impor-
tantly, the prediction δthðMuÞ=h ¼ −4ð83Þ Hz for the additive
constant falls well inside the 85 Hz theoretical uncertainty. As
δthðMuÞ is a measure of uncomputed terms in the theory, the
value implies that the theory is sufficiently accurate given the
current constraints. Eides (2019) gave an alternative predic-
tion for the uncertainty of the recommended muonium hyper-
fine splitting.
The 2018 recommended value for the muon-to-electron

mass ratio is

mμ=me ¼ 206.768 2830ð46Þ ð198Þ
and has a relative standard uncertainty of 2.2 × 10−8 that is
nearly twice that of the 1999 measurement of ΔEMu in
Eq. (191). This increase simply reflects the fact that the square
of the relative standard uncertainty formμ=me to good approxi-
mation satisfies

u2r ðmμ=meÞ ¼ u2r (ΔEMuðthÞ)þ u2r ðΔEMuÞ; ð199Þ

which follows fromerror propagationwithEqs. (170) and (186).
The relative standard uncertainties in the theory for and
measurement of the hyperfine splitting are almost the same.

New data on the muonic hyperfine splitting by the
MuSEUM collaboration at the J-PARC Muon Science
Facility are expected in the near future (Strasser et al., 2019).

XVIII. LATTICE SPACINGS OF SILICON CRYSTALS

In this section, we summarize efforts to determine the lattice
spacing of an ideal (or nearly perfect) natural-silicon single
crystal. We also present values for several historical x-ray
units in terms of the SI unit meter. Three stable isotopes of
silicon exist in nature. They are 28Si, 29Si, and 30Si with
amount-of-substance fractions xðASiÞ of approximately 0.92,
0.05, and 0.03, respectively. Highly enriched silicon single
crystals have xð28SiÞ ≈ 0.999 96.
The quantities of interest are the f220g crystal lattice

spacing d220ðXÞ in meters of a number of different crystals
X using a combined x-ray and optical interferometer (XROI)
as well as the fractional differences

d220ðXÞ − d220ðYÞ
d220ðYÞ

ð200Þ

for single crystals X and Y, determined using a lattice
comparator based on x-ray double-crystal nondispersive
diffractometry.
Data on eight natural Si crystals, in the literature denoted by

WASO 4.2a, WASO 04, WASO 17, NRLM3, NRLM4, MO*,
ILL, and N, are relevant for the 2018 CODATA adjustment.
Their lattice spacings d220ðXÞ are adjusted constants in our
least-squares calculations. The simplified notation W4.2a,
W04, W17, NR3, and NR4 is used in quantity symbols
and tables for the first five crystals. The lattice spacing for the
ideal natural-silicon single crystal d220 is an adjusted constant.
Lattice-spacing data included in this adjustment are items

E1–E17 in Table XXVII and quoted at a temperature of
22.5 °C and in vacuum. All data but one were already included
in the 2014 adjustment. The new measurement is from Kessler
et al. (2017) at the National Institute of Standards and
Technology, Gaithersburg, USA and given as item E13 in
the table. They measured the fractional difference for natural
Si crystals ILL and W04. Consistent with previous adjust-
ments and, in particular, following the discussions by Mohr
and Taylor (1999, 2000), we expand their quoted uncertainty
by 20 × 10−9 in quadrature to properly account for uncer-
tainties due to carbon and oxygen impurities in the crystal.
The copper Kα1 x unit with symbol xuðCuKα1Þ, the

molybdenum Kα1 x unit with symbol xuðMoKα1Þ, and the
ångström star with symbol Å� are historic x-ray units that are
still of current interest. They are defined by assigning an
exact, conventional value to the wavelength of the CuKα1,
MoKα1, and WKα1 x-ray lines. These assigned wavelengths
for λðCuKα1Þ, λðMoKα1Þ, and λðWKα1Þ are 1537.400
xuðCuKα1Þ, 707.400 xuðMoKα1Þ, and 0.209 010 0 Å�,
respectively. The four relevant experimental input data are
the measured ratios of CuKα1, MoKα1, and WKα1 wave-
lengths to the f220g lattice spacings of crystals WASO 4.2a
and N and are items E18–E21 in Table XXVII. In the least-
squares calculations, the units xuðCuKα1Þ, xuðMoKα1Þ, and
Å� are adjusted constants.
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The correlation coefficients among the data on lattice spac-
ings and x-ray units are given in Table XXVIII. Discussions of
these correlations can be found in previous adjustments. The
sole new data point has no correlations with previous data.
Observational equations may be found in Table XXVI.

XIX. NEWTONIAN CONSTANT OF GRAVITATION

Table XXIX summarizes the 16 measured values of the
Newtonian constant of gravitation G considered as input data
for the 2018 adjustment. Since the 2014 adjustment, two new
values have become available (Li et al., 2018) and corrections

have been applied to a previously reported value (Parks and
Faller, 2010). Figure 9 illustrates all input data. The mea-
surements are inconsistent and an expansion factor of 3.9 is
required to bring all residuals to within a factor of two from
the 2018 recommended value of

G¼ 6.67430ð15Þ×10−11 m3kg−1 s−2 ½2.2×10−5�: ð201Þ

The five measurements that contribute most to this value are
the UWash-00, UZur-06, UCI-14, and the HUSTA;T-18
values. The residuals of the data from BIPM-14 and JILA-
18 are the largest and determined our expansion factor.

TABLE XXVII. Input data for the determination of the 2018 recommended values of the lattice spacings of an ideal natural Si crystal and x-
ray units. The label in the first column is used in Table XXVIII to list correlation coefficients among the data and in Table XXVI for
observational equations. The uncertainties are not those as originally published, but corrected according the considerations in Sec. III.I of Mohr
and Taylor (2000). For additional information about the uncertainties of data published after the closing data of the 1998 CODATA adjustment,
see also the corresponding text in this and other CODATA publications. Columns four and five give the reference and an abbreviation of the
name of the laboratory in which the experiment has been performed, and year of publication. An extensive list of abbreviations is found at the
end of this report.

Input datum Value
Relat. stand.
uncert. ur Laboratory Reference(s)

E1 1 − d220ðW17Þ=d220ðILLÞ −8ð22Þ × 10−9 NIST-99 Kessler et al. (2000)
E2 1 − d220ðMO�Þ=d220ðILLÞ 86ð27Þ × 10−9 NIST-99 Kessler et al. (2000)
E3 1 − d220ðNR3Þ=d220ðILLÞ 33ð22Þ × 10−9 NIST-99 Kessler et al. (2000)
E4 1 − d220ðNÞ=d220ðW17Þ 7ð22Þ × 10−9 NIST-97 Kessler, Schweppe,

and Deslattes (1997)
E5 d220ðW4:2aÞ=d220ðW04Þ − 1 −1ð21Þ × 10−9 PTB-98 Martin et al. (1998)
E6 d220ðW17Þ=d220ðW04Þ − 1 22ð22Þ × 10−9 PTB-98 Martin et al. (1998)
E7 d220ðW17Þ=d220ðW04Þ − 1 11ð21Þ × 10−9 NIST-06 Hanke and Kessler (2005)
E8 d220ðMO�Þ=d220ðW04Þ − 1 −103ð28Þ × 10−9 PTB-98 Martin et al. (1998)
E9 d220ðNR3Þ=d220ðW04Þ − 1 −23ð21Þ × 10−9 PTB-98 Martin et al. (1998)
E10 d220ðNR3Þ=d220ðW04Þ − 1 −11ð21Þ × 10−9 NIST-06 Hanke and Kessler (2005)
E11 d220=d220ðW04Þ − 1 10ð11Þ × 10−9 PTB-03 Becker et al. (2003)
E12 d220ðNR4Þ=d220ðW04Þ − 1 25ð21Þ × 10−9 NIST-06 Hanke and Kessler (2005)
E13 d220ðILLÞ=d220ðW04Þ − 1 −20ð22Þ × 10−9 NIST-17 Kessler et al. (2017)
E14 d220ðMO�Þ 192 015.5508(42) fm 2.2 × 10−8 INRIM-08 Ferroglio, Mana,

and Massa (2008)
E15 d220ðW04Þ 192 015.5702(29) fm 1.5 × 10−8 INRIM-09 Massa et al. (2009)
E16 d220ðW4:2aÞ 192 015.5691(29) fm 1.5 × 10−8 INRIM-09 Massa, Mana,

and Kuetgens (2009)
E17 d220ðW4:2aÞ 192 015.563(12) fm 6.2 × 10−8 PTB-81 Becker et al. (1981);
E18 λðCuKα1Þ=d220ðW4:2aÞ 0.802 327 11(24) 3.0 × 10−7 FSUJ/PTB-91 Windisch

and Becker (1990);
and Härtwig et al. (1991)

E19 λðCuKα1Þ=d220ðNÞ 0.802 328 04(77) 9.6 × 10−7 NIST-73 Deslattes
and Henins (1973)

E20 λðWKα1Þ=d220ðNÞ 0.108 852 175(98) 9.0 × 10−7 NIST-79 Kessler, Deslattes,
and Henins (1979)

E21 λðMoKα1Þ=d220ðNÞ 0.369 406 04(19) 5.3 × 10−7 NIST-73 Deslattes and Henins (1973)

TABLE XXVIII. Correlation coefficients rðxi; xjÞ > 0.0001 among the input data for the lattice spacing of an ideal natural Si crystal and x-ray
units given in Table XXVII.

rðE1;E2Þ ¼ 0.4214 rðE1;E3Þ ¼ 0.5158 rðE1;E4Þ ¼ −0.2877 rðE1;E7Þ ¼ −0.3674 rðE1;E10Þ ¼ 0.0648
rðE1;E12Þ ¼ 0.0648 rðE2;E3Þ ¼ 0.4213 rðE2;E4Þ ¼ 0.0960 rðE2;E7Þ ¼ 0.0530 rðE2;E10Þ ¼ 0.0530
rðE2;E12Þ ¼ 0.0530 rðE3;E4Þ ¼ 0.1175 rðE3;E7Þ ¼ 0.0648 rðE3;E10Þ ¼ −0.3674 rðE3;E12Þ ¼ 0.0648
rðE4;E7Þ ¼ 0.5037 rðE4;E10Þ ¼ 0.0657 rðE4;E12Þ ¼ 0.0657 rðE5;E6Þ ¼ 0.4685 rðE5;E8Þ ¼ 0.3718
rðE5;E9Þ ¼ 0.5017 rðE6;E8Þ ¼ 0.3472 rðE6;E9Þ ¼ 0.4685 rðE7;E10Þ ¼ 0.5093 rðE7;E12Þ ¼ 0.5093
rðE8;E9Þ ¼ 0.3718 rðE10;E12Þ ¼ 0.5093 rðE14;E15Þ ¼ 0.0230 rðE14;E16Þ ¼ 0.0230 rðE15;E16Þ ¼ 0.0269
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We note, however, that the inconsistencies are smaller than in
our previous 2014 adjustment.
We briefly describe the new measurements in the next two

sections. Details regarding older measurements can be found
in descriptions of previous CODATA adjustments.

A. Corrected value of the 2010 measurement at JILA

In 2010, Parks and Faller (2010) at JILA, University of
Colorado and National Institute of Standards and Technology,
Boulder, Colorado, USA used simple pendulums to determine
G in an experimental design similar to that of Kleinevoß
(2002) and Kleinvoß et al. (2002). Two pendulums, each with
a cylindrical test mass suspended by four wires, were aligned
such that the cylinders were colinear. As surrounding source
masses moved, changes in the separation between the test
masses were interferometrically monitored.
In 2016, the apparatus was transferred to NIST,

Gaithersburg, Maryland, USA with the goal of repeating
the experiment. During initial preparations at NIST, two
calculational errors were discovered, both associated with
the rotation of the test masses when they are horizontally
displaced. Rotation occurred because the connection points of

the suspension wires to the test masses were located above
their center of mass. The first error was in the derivation of the
pendulums’ effective spring constants used to calculate the
gravitational force from a measured horizontal separation
between the test masses. The contribution from rotation to
the spring constants was overestimated. The initial relative
correction to G of 5.8ð0.4Þ × 10−5 has been updated to
0.40ð30Þ × 10−5. The second error arises from the interfer-
ometer axis being displaced by about 0.95(30) mm above the
horizontal plane containing the test masses’ center of mass,
resulting in an Abbe error. The relative correction to G to
remove the Abbe error is 9.4ð3.0Þ × 10−5.
Applying these two corrections results in a relative increase

of their 2010 value for G of 3.9 × 10−5 and an increase of the
relative uncertainty from 2.1 × 10−5 to 3.7 × 10−5. The new
JILA value and uncertainty (Parks and Faller, 2019) are
labeled JILA-18 in Table XXIX and Fig. 9.

B. Measurements from the Huazhong University of Science
and Technology

Two new determinations of G, using independent methods
and having the lowest uncertainties to date, were reported in

TABLE XXIX. Input data for the Newtonian constant of gravitation G relevant to the 2018 adjustment. The first two columns give the
reference and an abbreviation of the name of the laboratory in which the experiment has been performed, and year of publication. The data are
uncorrelated except for three cases with correlation coefficients rðNIST-82;LANL-97Þ ¼ 0.351, rðHUST-05;HUST-09Þ ¼ 0.134, and
rðHUST-09;HUSTT-18Þ ¼ 0.068.

Source Identification Method Gð10−11 kg−1 × m3 s−2Þ Rel. stand. uncert. ur

Luther and Towler (1982) NIST-82 Fiber torsion balance,
dynamic mode

6.672 48(43) 6.4 × 10−5

Karagioz and Izmailov (1996) TR&D-96 Fiber torsion balance,
dynamic mode

6.672 9(5) 7.5 × 10−5

Bagley and Luther (1997) LANL-97 Fiber torsion balance,
dynamic mode

6.673 98(70) 1.0 × 10−4

Gundlach and Merkowitz
(2000, 2002)

UWash-00 Fiber torsion balance,
dynamic compensation

6.674 255(92) 1.4 × 10−5

Quinn et al. (2001) BIPM-01 Strip torsion balance,
compensation mode,
static deflection

6.675 59(27) 4.0 × 10−5

Kleinevoß (2002) and
Kleinvoß et al. (2002)

UWup-02 Suspended body,
displacement

6.674 22(98) 1.5 × 10−4

Armstrong and Fitzgerald
(2003)

MSL-03 Strip torsion balance,
compensation mode

6.673 87(27) 4.0 × 10−5

Hu, Guo, and Luo (2005) HUST-05 Fiber torsion balance,
dynamic mode

6.672 22(87) 1.3 × 10−4

Schlamminger et al. (2006) UZur-06 Stationary body,
weight change

6.674 25(12) 1.9 × 10−5

Luo et al. (2009) and
Tu et al. (2010)

HUST-09 Fiber torsion balance,
dynamic mode

6.673 49(18) 2.7 × 10−5

Quinn et al. (2013, 2014) BIPM-14 Strip torsion balance,
compensation mode,
static deflection

6.675 54(16) 2.4 × 10−5

Prevedelli et al. (2014) and
Rosi et al. (2014)

LENS-14 Double atom interferometer,
gravity gradiometer

6.671 91(99) 1.5 × 10−4

Newman et al. (2014) UCI-14 Cryogenic torsion balance,
dynamic mode

6.674 35(13) 1.9 × 10−5

Li et al. (2018) HUSTT-18 Fiber torsion balance,
dynamic mode

6.674 184(78) 1.2 × 10−5

Li et al. (2018) HUSTA-18 Fiber torsion balance,
dynamic compensation

6.674 484(77) 1.2 × 10−5

Parks and Faller (2019) JILA-18 Suspended body,
displacement

6.672 60(25) 3.7 × 10−5
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2018. Both measurements were performed at Huazhong
University of Science and Technology (HUST), Wuhan,
People’s Republic of China (Li et al., 2018). The first
determination used the time-of-swing (TOS) method where
the change in oscillation frequency of a torsion pendulum for
two different positions of source masses is measured. These
measurements were performed on two independent appara-
tuses located in laboratories separated by 150 m. In one
apparatus (TOS-I), the researchers used three different silica
fibers to check for fiber-induced systematics. In the other
apparatus (TOS-II), the same fiber was used for all measure-
ments. The largest uncertainty component for all data sets was
statistical, ranging from 10 to 30 parts in 106 relative
uncertainty. The determination of the horizontal separation
between the geometric centers of the spherical source masses
had the largest systematic uncertainty; its relative uncertainty
ranged from 8.5 to 9.5 parts in 106. In the CODATA adjust-
ment, we only use the combined value for G from the two
TOS apparatuses. This input datum is labeled HUSTT-18 in
Table XXIX and Fig. 9.
Small correlations with the 2009 TOS determination ofG at

HUST (Luo et al., 2009) exist because the same source masses
were used in TOS-II, and the same measurement instrumen-
tation and methods for the determination of various systematic
uncertainties were used. A conservative estimate for the
correlation coefficient between HUST-09 and HUSTT-18
is 0.068.
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FIG. 9. The 16 input data determining the Newtonian constant
of gravitation G ordered by publication year. The 2018 recom-
mended value for G has been subtracted. Error bars correspond to
one-standard-deviation uncertainties as reported in Table XXIX.
The uncertainties after applying the 3.9 multiplicative expansion
factor to determine the 2018 recommended value are not shown.
Labels on the left side of the figure denote the laboratories and the
last two digits of the year in which the data were reported. See
Table XXIX for details. The gray band corresponds to the one-
standard-deviation uncertainty of the recommended value.

TABLE XXX. An abbreviated list of the CODATA recommended values of the fundamental constants of physics and
chemistry based on the 2018 adjustment.

Quantity Symbol Value Unit
Relative std.
uncert. ur

speed of light in vacuum c 299 792 458 m s−1 exact
Newtonian constant of gravitation G 6.674 30ð15Þ × 10−11 m3 kg−1 s−2 2.2 × 10−5

Planck constanta h 6.626 070 15 × 10−34 J Hz−1 exact
ℏ 1.054 571 817… × 10−34 J s exact

elementary charge e 1.602 176 634 × 10−19 C exact
vacuum magnetic permeability 4παℏ=e2c μ0 1.256 637 062 12ð19Þ × 10−6 NA−2 1.5 × 10−10

vacuum electric permittivity 1=μ0c2 ϵ0 8.854 187 8128ð13Þ × 10−12 Fm−1 1.5 × 10−10

Josephson constant 2 e=h KJ 483 597.848 4… × 109 HzV−1 exact
von Klitzing constant μ0c=2α ¼ 2πℏ=e2 RK 25 812.807 45… Ω exact
magnetic flux quantum 2πℏ=ð2eÞ Φ0 2.067 833 848… × 10−15 Wb exact
conductance quantum 2e2=2πℏ G0 7.748 091 729… × 10−5 S exact
electron mass me 9.109 383 7015ð28Þ × 10−31 kg 3.0 × 10−10

proton mass mp 1.672 621 923 69ð51Þ × 10−27 kg 3.1 × 10−10

proton-electron mass ratio mp=me 1836.152 673 43(11) 6.0 × 10−11

fine-structure constant e2=4πϵ0ℏc α 7.297 352 5693ð11Þ × 10−3 1.5 × 10−10

inverse fine-structure constant α−1 137.035 999 084(21) 1.5 × 10−10

Rydberg frequency α2mec2=2h cR∞ 3.289 841 960 2508ð64Þ × 1015 Hz 1.9 × 10−12

Boltzmann constant k 1.380 649 × 10−23 J K−1 exact
Avogadro constant NA 6.022 140 76 × 1023 mol−1 exact
molar gas constant NAk R 8.314 462 618… Jmol−1 K−1 exact
Faraday constant NAe F 96 485.332 12… Cmol−1 exact
Stefan-Boltzmann constant ðπ2=60Þk4=ℏ3c2 σ 5.670 374 419… × 10−8 Wm−2 K−4 exact

Non-SI units accepted for use with the SI
electron volt ðe=CÞ J eV 1.602 176 634 × 10−19 J exact
(unified) atomic mass unit 1

12
mð12CÞ u 1.660 539 066 60ð50Þ × 10−27 kg 3.0 × 10−10

aThe energy of a photon with frequency ν expressed in unit Hz is E ¼ hν in unit J. Unitary time evolution of the
state of this photon is given by expð−iEt=ℏÞjφi, where jφi is the photon state at time t ¼ 0 and time is expressed in
unit s. The ratio Et=ℏ is a phase.
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TABLE XXXI. The CODATA recommended values of the fundamental constants of physics and chemistry based on the 2018 adjustment.

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

UNIVERSAL
speed of light in vacuum c 299 792 458 m s−1 exact
vacuum magnetic permeability 4παℏ=e2c μ0 1.256 637 062 12ð19Þ × 10−6 NA−2 1.5 × 10−10

μ0=ð4π × 10−7Þ 1.000 000 000 55(15) NA−2 1.5 × 10−10

vacuum electric permittivity 1=μ0c2 ϵ0 8.854 187 8128ð13Þ × 10−12 Fm−1 1.5 × 10−10

characteristic impedance of vacuum μ0c Z0 376.730 313 668(57) Ω 1.5 × 10−10

Newtonian constant of gravitation G 6.674 30ð15Þ × 10−11 m3 kg−1 s−2 2.2 × 10−5

G=ℏc 6.708 83ð15Þ × 10−39 ðGeV=c2Þ−2 2.2 × 10−5

Planck constanta h 6.626 070 15 × 10−34 J Hz−1 exact
4.135 667 696… × 10−15 eVHz−1 exact

ℏ 1.054 571 817… × 10−34 J s exact
6.582 119 569… × 10−16 eV s exact

ℏc 197.326 980 4… MeV fm exact
Planck mass ðℏc=GÞ1=2 mP 2.176 434ð24Þ × 10−8 kg 1.1 × 10−5

energy equivalent mPc2 1.220 890ð14Þ × 1019 GeV 1.1 × 10−5

Planck temperature ðℏc5=GÞ1=2=k TP 1.416 784ð16Þ × 1032 K 1.1 × 10−5

Planck length ℏ=mPc ¼ ðℏG=c3Þ1=2 lP 1.616 255ð18Þ × 10−35 m 1.1 × 10−5

Planck time lP=c ¼ ðℏG=c5Þ1=2 tP 5.391 247ð60Þ × 10−44 s 1.1 × 10−5

ELECTROMAGNETIC
elementary charge e 1.602 176 634 × 10−19 C exact

e=ℏ 1.519 267 447… × 1015 A J−1 exact
magnetic flux quantum 2πℏ=ð2eÞ Φ0 2.067 833 848… × 10−15 Wb exact
conductance quantum 2e2=2πℏ G0 7.748 091 729… × 10−5 S exact

inverse of conductance quantum G−1
0

12 906.403 72… Ω exact
Josephson constant 2e=h KJ 483 597.848 4… × 109 HzV−1 exact
von Klitzing constant μ0c=2α ¼ 2πℏ=e2 RK 25 812.807 45… Ω exact
Bohr magneton eℏ=2me μB 9.274 010 0783ð28Þ × 10−24 J T−1 3.0 × 10−10

5.788 381 8060ð17Þ × 10−5 eVT−1 3.0 × 10−10

μB=h 1.399 624 493 61ð42Þ × 1010 HzT−1 3.0 × 10−10

μB=hc 46.686 447 783(14) ½m−1T−1�b 3.0 × 10−10

μB=k 0.671 713 815 63(20) K T−1 3.0 × 10−10

nuclear magneton eℏ=2mp μN 5.050 783 7461ð15Þ × 10−27 J T−1 3.1 × 10−10

3.152 451 258 44ð96Þ × 10−8 eV T−1 3.1 × 10−10

μN=h 7.622 593 2291(23) MHzT−1 3.1 × 10−10

μN=hc 2.542 623 413 53ð78Þ × 10−2 ½m−1 T−1�b 3.1 × 10−10

μN=k 3.658 267 7756ð11Þ × 10−4 KT−1 3.1 × 10−10

ATOMIC AND NUCLEAR
General

fine-structure constant e2=4πϵ0ℏc α 7.297 352 5693ð11Þ × 10−3 1.5 × 10−10

inverse fine-structure constant α−1 137.035 999 084(21) 1.5 × 10−10

Rydberg frequency α2mec2=2h ¼ Eh=2h cR∞ 3.289 841 960 2508ð64Þ × 1015 Hz 1.9 × 10−12

energy equivalent hcR∞ 2.179 872 361 1035ð42Þ × 10−18 J 1.9 × 10−12

13.605 693 122 994(26) eV 1.9 × 10−12

Rydberg constant R∞ 10 973 731.568 160(21) ½m−1�b 1.9 × 10−12

Bohr radius ℏ=αmec ¼ 4πϵ0ℏ2=mee2 a0 5.291 772 109 03ð80Þ × 10−11 m 1.5 × 10−10

Hartree energy α2mec2 ¼ e2=4πϵ0a0 ¼ 2hcR∞ Eh 4.359 744 722 2071ð85Þ × 10−18 J 1.9 × 10−12

27.211 386 245 988(53) eV 1.9 × 10−12

quantum of circulation πℏ=me 3.636 947 5516ð11Þ × 10−4 m2 s−1 3.0 × 10−10

2πℏ=me 7.273 895 1032ð22Þ × 10−4 m2 s−1 3.0 × 10−10

Electroweak
Fermi coupling constantc GF=ðℏcÞ3 1.166 3787ð6Þ × 10−5 GeV−2 5.1 × 10−7

weak mixing angled θW (on-shell scheme)
sin2θW ¼ s2W ≡ 1 − ðmW=mZÞ2 sin2 θW 0.222 90(30) 1.3 × 10−3

Electron, e−

electron mass me 9.109 383 7015ð28Þ × 10−31 kg 3.0 × 10−10

5.485 799 090 65ð16Þ × 10−4 u 2.9 × 10−11

energy equivalent mec2 8.187 105 7769ð25Þ × 10−14 J 3.0 × 10−10

0.510 998 950 00(15) MeV 3.0 × 10−10

(Table continued)
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TABLE XXXI. (Continued)

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

electron-muon mass ratio me=mμ 4.836 331 69ð11Þ × 10−3 2.2 × 10−8

electron-tau mass ratio me=mτ 2.875 85ð19Þ × 10−4 6.8 × 10−5

electron-proton mass ratio me=mp 5.446 170 214 87ð33Þ × 10−4 6.0 × 10−11

electron-neutron mass ratio me=mn 5.438 673 4424ð26Þ × 10−4 4.8 × 10−10

electron-deuteron mass ratio me=md 2.724 437 107 462ð96Þ × 10−4 3.5 × 10−11

electron-triton mass ratio me=mt 1.819 200 062 251ð90Þ × 10−4 5.0 × 10−11

electron-helion mass ratio me=mh 1.819 543 074 573ð79Þ × 10−4 4.3 × 10−11

electron to alpha particle mass ratio me=mα 1.370 933 554 787ð45Þ × 10−4 3.3 × 10−11

electron charge-to-mass quotient −e=me −1.758 820 010 76ð53Þ × 1011 Ckg−1 3.0 × 10−10

electron molar mass NAme MðeÞ;Me 5.485 799 0888ð17Þ × 10−7 kgmol−1 3.0 × 10−10

reduced Compton wavelength ℏ=mec ¼ αa0 ƛC 3.861 592 6796ð12Þ × 10−13 m 3.0 × 10−10

Compton wavelength λC 2.426 310 238 67ð73Þ × 10−12 [m]b 3.0 × 10−10

classical electron radius α2a0 re 2.817 940 3262ð13Þ × 10−15 m 4.5 × 10−10

Thomson cross section ð8π=3Þr2e σe 6.652 458 7321ð60Þ × 10−29 m2 9.1 × 10−10

electron magnetic moment μe −9.284 764 7043ð28Þ × 10−24 J T−1 3.0 × 10−10

to Bohr magneton ratio μe=μB −1.001 159 652 181 28ð18Þ 1.7 × 10−13

to nuclear magneton ratio μe=μN −1838.281 971 88ð11Þ 6.0 × 10−11

electron magnetic-moment anomaly jμej=μB − 1 ae 1.159 652 181 28ð18Þ × 10−3 1.5 × 10−10

electron g-factor −2ð1þ aeÞ ge −2.002 319 304 362 56ð35Þ 1.7 × 10−13

electron-muon magnetic-moment ratio μe=μμ 206.766 9883(46) 2.2 × 10−8

electron-proton magnetic-moment ratio μe=μp −658.210 687 89ð20Þ 3.0 × 10−10

electron to shielded proton magnetic- μe=μ0p −658.227 5971ð72Þ 1.1 × 10−8

moment ratio (H2O, sphere, 25 °C)
electron-neutron magnetic-moment ratio μe=μn 960.920 50(23) 2.4 × 10−7

electron-deuteron magnetic-moment ratio μe=μd −2143.923 4915ð56Þ 2.6 × 10−9

electron to shielded helion magnetic- μe=μ0h 864.058 257(10) 1.2 × 10−8

moment ratio (gas, sphere, 25 °C)
electron gyromagnetic ratio 2jμej=ℏ γe 1.760 859 630 23ð53Þ × 1011 s−1 T−1 3.0 × 10−10

28 024.951 4242(85) MHzT−1 3.0 × 10−10

Muon, μ−
muon mass mμ 1.883 531 627ð42Þ × 10−28 kg 2.2 × 10−8

0.113 428 9259(25) u 2.2 × 10−8

energy equivalent mμc2 1.692 833 804ð38Þ × 10−11 J 2.2 × 10−8

105.658 3755(23) MeV 2.2 × 10−8

muon-electron mass ratio mμ=me 206.768 2830(46) 2.2 × 10−8

muon-tau mass ratio mμ=mτ 5.946 35ð40Þ × 10−2 6.8 × 10−5

muon-proton mass ratio mμ=mp 0.112 609 5264(25) 2.2 × 10−8

muon-neutron mass ratio mμ=mn 0.112 454 5170(25) 2.2 × 10−8

muon molar mass NAmμ MðμÞ;Mμ 1.134 289 259ð25Þ × 10−4 kgmol−1 2.2 × 10−8

reduced muon Compton wavelength ℏ=mμc ƛC;μ 1.867 594 306ð42Þ × 10−15 m 2.2 × 10−8

muon Compton wavelength λC;μ 1.173 444 110ð26Þ × 10−14 [m]b 2.2 × 10−8

muon magnetic moment μμ −4.490 448 30ð10Þ × 10−26 J T−1 2.2 × 10−8

to Bohr magneton ratio μμ=μB −4.841 970 47ð11Þ × 10−3 2.2 × 10−8

to nuclear magneton ratio μμ=μN −8.890 597 03ð20Þ 2.2 × 10−8

muon magnetic-moment
anomaly jμμj=ðeℏ=2mμÞ − 1

aμ 1.165 920 89ð63Þ × 10−3 5.4 × 10−7

muon g-factor −2ð1þ aμÞ gμ −2.002 331 8418ð13Þ 6.3 × 10−10

muon-proton magnetic-moment ratio μμ=μp −3.183 345 142ð71Þ 2.2 × 10−8

Tau, τ−
tau masse mτ 3.167 54ð21Þ × 10−27 kg 6.8 × 10−5

1.907 54(13) u 6.8 × 10−5

energy equivalent mτc2 2.846 84ð19Þ × 10−10 J 6.8 × 10−5

1776.86(12) MeV 6.8 × 10−5

tau-electron mass ratio mτ=me 3477.23(23) 6.8 × 10−5

tau-muon mass ratio mτ=mμ 16.8170(11) 6.8 × 10−5

tau-proton mass ratio mτ=mp 1.893 76(13) 6.8 × 10−5

tau-neutron mass ratio mτ=mn 1.891 15(13) 6.8 × 10−5

tau molar mass NAmτ MðτÞ;Mτ 1.907 54ð13Þ × 10−3 kgmol−1 6.8 × 10−5

(Table continued)
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TABLE XXXI. (Continued)

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

reduced tau Compton wavelength ℏ=mτc ƛC;τ 1.110 538ð75Þ × 10−16 m 6.8 × 10−5

tau Compton wavelength λC;τ 6.977 71ð47Þ × 10−16 [m]b 6.8 × 10−5

Proton, p
proton mass mp 1.672 621 923 69ð51Þ × 10−27 kg 3.1 × 10−10

1.007 276 466 621(53) u 5.3 × 10−11

energy equivalent mpc2 1.503 277 615 98ð46Þ × 10−10 J 3.1 × 10−10

938.272 088 16(29) MeV 3.1 × 10−10

proton-electron mass ratio mp=me 1836.152 673 43(11) 6.0 × 10−11

proton-muon mass ratio mp=mμ 8.880 243 37(20) 2.2 × 10−8

proton-tau mass ratio mp=mτ 0.528 051(36) 6.8 × 10−5

proton-neutron mass ratio mp=mn 0.998 623 478 12(49) 4.9 × 10−10

proton charge-to-mass quotient e=mp 9.578 833 1560ð29Þ × 107 Ckg−1 3.1 × 10−10

proton molar mass NAmp MðpÞ, Mp 1.007 276 466 27ð31Þ × 10−3 kgmol−1 3.1 × 10−10

reduced proton Compton wavelength ℏ=mpc ƛC;p 2.103 089 103 36ð64Þ × 10−16 m 3.1 × 10−10

proton Compton wavelength λC;p 1.321 409 855 39ð40Þ × 10−15 [m]b 3.1 × 10−10

proton rms charge radius rp 8.414ð19Þ × 10−16 m 2.2 × 10−3

proton magnetic moment μp 1.410 606 797 36ð60Þ × 10−26 J T−1 4.2 × 10−10

to Bohr magneton ratio μp=μB 1.521 032 202 30ð46Þ × 10−3 3.0 × 10−10

to nuclear magneton ratio μp=μN 2.792 847 344 63(82) 2.9 × 10−10

proton g-factor 2μp=μN gp 5.585 694 6893(16) 2.9 × 10−10

proton-neutron magnetic-moment ratio μp=μn −1.459 898 05ð34Þ 2.4 × 10−7

shielded proton magnetic-moment (H2O, sphere, 25 °C) μ0p 1.410 570 560ð15Þ × 10−26 J T−1 1.1 × 10−8

to Bohr magneton ratio μ0p=μB 1.520 993 128ð17Þ × 10−3 1.1 × 10−8

to nuclear magneton ratio μ0p=μN 2.792 775 599(30) 1.1 × 10−8

proton magnetic shielding correction 1 − μ0p=μp
(H2O, sphere, 25 °C)

σ0p 2.5689ð11Þ × 10−5 4.2 × 10−4

proton gyromagnetic ratio 2μp=ℏ γp 2.675 221 8744ð11Þ × 108 s−1 T−1 4.2 × 10−10

42.577 478 518(18) MHzT−1 4.2 × 10−10

shielded proton gyromagnetic ratio γ0p 2.675 153 151ð29Þ × 108 s−1 T−1 1.1 × 10−8

2μ0p=ℏ (H2O, sphere, 25 °C) 42.576 384 74(46) MHzT−1 1.1 × 10−8

Neutron, n
neutron mass mn 1.674 927 498 04ð95Þ × 10−27 kg 5.7 × 10−10

1.008 664 915 95(49) u 4.8 × 10−10

energy equivalent mnc2 1.505 349 762 87ð86Þ × 10−10 J 5.7 × 10−10

939.565 420 52(54) MeV 5.7 × 10−10

neutron-electron mass ratio mn=me 1838.683 661 73(89) 4.8 × 10−10

neutron-muon mass ratio mn=mμ 8.892 484 06(20) 2.2 × 10−8

neutron-tau mass ratio mn=mτ 0.528 779(36) 6.8 × 10−5

neutron-proton mass ratio mn=mp 1.001 378 419 31(49) 4.9 × 10−10

neutron-proton mass difference mn −mp 2.305 574 35ð82Þ × 10−30 kg 3.5 × 10−7

1.388 449 33ð49Þ × 10−3 u 3.5 × 10−7

energy equivalent ðmn−mpÞc2 2.072 146 89ð74Þ × 10−13 J 3.5 × 10−7

1.293 332 36(46) MeV 3.5 × 10−7

neutron molar mass NAmn MðnÞ;Mn 1.008 664 915 60ð57Þ × 10−3 kgmol−1 5.7 × 10−10

reduced neutron Compton wavelength ℏ=mnc ƛC;n 2.100 194 1552ð12Þ × 10−16 m 5.7 × 10−10

neutron Compton wavelength λC;n 1.319 590 905 81ð75Þ × 10−15 [m]b 5.7 × 10−10

neutron magnetic moment μn −9.662 3651ð23Þ × 10−27 J T−1 2.4 × 10−7

to Bohr magneton ratio μn=μB −1.041 875 63ð25Þ × 10−3 2.4 × 10−7

to nuclear magneton ratio μn=μN −1.913 042 73ð45Þ 2.4 × 10−7

neutron g-factor 2μn=μN gn −3.826 085 45ð90Þ 2.4 × 10−7

neutron-electron magnetic-moment ratio μn=μe 1.040 668 82ð25Þ × 10−3 2.4 × 10−7

neutron-proton magnetic-moment ratio μn=μp −0.684 979 34ð16Þ 2.4 × 10−7

neutron to shielded proton magnetic- μn=μ0p −0.684 996 94ð16Þ 2.4 × 10−7

moment ratio (H2O, sphere, 25 °C)
neutron gyromagnetic ratio 2jμnj=ℏ γn 1.832 471 71ð43Þ × 108 s−1 T−1 2.4 × 10−7

29.164 6931(69) MHzT−1 2.4 × 10−7

(Table continued)
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TABLE XXXI. (Continued)

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

Deuteron, d
deuteron mass md 3.343 583 7724ð10Þ × 10−27 kg 3.0 × 10−10

2.013 553 212 745(40) u 2.0 × 10−11

energy equivalent mdc2 3.005 063 231 02ð91Þ × 10−10 J 3.0 × 10−10

1875.612 942 57(57) MeV 3.0 × 10−10

deuteron-electron mass ratio md=me 3670.482 967 88(13) 3.5 × 10−11

deuteron-proton mass ratio md=mp 1.999 007 501 39(11) 5.6 × 10−11

deuteron molar mass NAmd MðdÞ;Md 2.013 553 212 05ð61Þ × 10−3 kgmol−1 3.0 × 10−10

deuteron rms charge radius rd 2.127 99ð74Þ × 10−15 m 3.5 × 10−4

deuteron magnetic moment μd 4.330 735 094ð11Þ × 10−27 J T−1 2.6 × 10−9

to Bohr magneton ratio μd=μB 4.669 754 570ð12Þ × 10−4 2.6 × 10−9

to nuclear magneton ratio μd=μN 0.857 438 2338(22) 2.6 × 10−9

deuteron g-factor μd=μN gd 0.857 438 2338(22) 2.6 × 10−9

deuteron-electron magnetic-moment ratio μd=μe −4.664 345 551ð12Þ × 10−4 2.6 × 10−9

deuteron-proton magnetic-moment ratio μd=μp 0.307 012 209 39(79) 2.6 × 10−9

deuteron-neutron magnetic-moment ratio μd=μn −0.448 206 53ð11Þ 2.4 × 10−7

Triton, t
triton mass mt 5.007 356 7446ð15Þ × 10−27 kg 3.0 × 10−10

3.015 500 716 21(12) u 4.0 × 10−11

energy equivalent mtc2 4.500 387 8060ð14Þ × 10−10 J 3.0 × 10−10

2808.921 132 98(85) MeV 3.0 × 10−10

triton-electron mass ratio mt=me 5496.921 535 73(27) 5.0 × 10−11

triton-proton mass ratio mt=mp 2.993 717 034 14(15) 5.0 × 10−11

triton molar mass NAmt MðtÞ;Mt 3.015 500 715 17ð92Þ × 10−3 kgmol−1 3.0 × 10−10

triton magnetic moment μt 1.504 609 5202ð30Þ × 10−26 J T−1 2.0 × 10−9

to Bohr magneton ratio μt=μB 1.622 393 6651ð32Þ × 10−3 2.0 × 10−9

to nuclear magneton ratio μt=μN 2.978 962 4656(59) 2.0 × 10−9

triton g-factor 2μt=μN gt 5.957 924 931(12) 2.0 × 10−9

Helion, h
helion mass mh 5.006 412 7796ð15Þ × 10−27 kg 3.0 × 10−10

3.014 932 247 175(97) u 3.2 × 10−11

energy equivalent mhc2 4.499 539 4125ð14Þ × 10−10 J 3.0 × 10−10

2808.391 607 43(85) MeV 3.0 × 10−10

helion-electron mass ratio mh=me 5495.885 280 07(24) 4.3 × 10−11

helion-proton mass ratio mh=mp 2.993 152 671 67(13) 4.4 × 10−11

helion molar mass NAmh MðhÞ;Mh 3.014 932 246 13ð91Þ × 10−3 kgmol−1 3.0 × 10−10

helion magnetic moment μh −1.074 617 532ð13Þ × 10−26 J T−1 1.2 × 10−8

to Bohr magneton ratio μh=μB −1.158 740 958ð14Þ × 10−3 1.2 × 10−8

to nuclear magneton ratio μh=μN −2.127 625 307ð25Þ 1.2 × 10−8

helion g-factor 2μh=μN gh −4.255 250 615ð50Þ 1.2 × 10−8

shielded helion magnetic moment (gas, sphere, 25 °C) μ0h −1.074 553 090ð13Þ × 10−26 J T−1 1.2 × 10−8

to Bohr magneton ratio μ0h=μB −1.158 671 471ð14Þ × 10−3 1.2 × 10−8

to nuclear magneton ratio μ0h=μN −2.127 497 719ð25Þ 1.2 × 10−8

shielded helion to proton magnetic-
moment ratio (gas, sphere, 25 °C)

μ0h=μp −0.761 766 5618ð89Þ 1.2 × 10−8

shielded helion to shielded proton
magnetic-moment ratio
(gas=H2O, spheres, 25 °C)

μ0h=μ
0
p −0.761 786 1313ð33Þ 4.3 × 10−9

shielded helion gyromagnetic ratio 2jμ0hj=ℏ
(gas, sphere, 25 °C)

γ0h 2.037 894 569ð24Þ × 108 s−1 T−1 1.2 × 10−8

32.434 099 42(38) MHzT−1 1.2 × 10−8

Alpha particle, α
alpha particle mass mα 6.644 657 3357ð20Þ × 10−27 kg 3.0 × 10−10

4.001 506 179 127(63) u 1.6 × 10−11

energy equivalent mαc2 5.971 920 1914ð18Þ × 10−10 J 3.0 × 10−10

3727.379 4066(11) MeV 3.0 × 10−10

alpha particle to electron mass ratio mα=me 7294.299 541 42(24) 3.3 × 10−11

(Table continued)
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TABLE XXXI. (Continued)

Quantity Symbol Numerical value Unit
Relative std.
uncert. ur

alpha particle to proton mass ratio mα=mp 3.972 599 690 09(22) 5.5 × 10−11

alpha particle molar mass NAmα MðαÞ;Mα 4.001 506 1777ð12Þ × 10−3 kgmol−1 3.0 × 10−10

PHYSICOCHEMICAL
Avogadro constant NA 6.022 140 76 × 1023 mol−1 exact
Boltzmann constant k 1.380 649 × 10−23 J K−1 exact

8.617 333 262… × 10−5 eVK−1 exact
k=h 2.083 661 912… × 1010 HzK−1 exact
k=hc 69.503 480 04… ½m−1 K−1�b exact

atomic mass constantf

mu¼ 1
12
mð12CÞ¼2hcR∞=α2c2ArðeÞ

mu 1.660 539 066 60ð50Þ × 10−27 kg 3.0 × 10−10

energy equivalent muc2 1.492 418 085 60ð45Þ × 10−10 J 3.0 × 10−10

931.494 102 42(28) MeV 3.0 × 10−10

molar mass constantf Mu 0.999 999 999 65ð30Þ × 10−3 kgmol−1 3.0 × 10−10

molar massf of carbon-12 Arð12CÞMu Mð12CÞ 11.999 999 9958ð36Þ × 10−3 kgmol−1 3.0 × 10−10

molar Planck constant NAh 3.990 312 712… × 10−10 J Hz−1 mol−1 exact
molar gas constant NAk R 8.314 462 618… Jmol−1 K−1 exact
Faraday constant NAe F 96 485.332 12… Cmol−1 exact
standard-state pressure 100 000 Pa exact
standard atmosphere 101 325 Pa exact
molar volume of ideal gas RT=p

T ¼ 273.15 K, p ¼ 100 kPa Vm 22.710 954 64… × 10−3 m3 mol−1 exact
or standard-state pressure

Loschmidt constant NA=Vm n0 2.651 645 804… × 1025 m−3 exact
molar volume of ideal gas RT=p

T ¼ 273.15 K, p ¼ 101.325 kPa Vm 22.413 969 54… × 10−3 m3mol−1 exact
or standard atmosphere

Loschmidt constant NA=Vm n0 2.686 780 111… × 1025 m−3 exact
Sackur-Tetrode (absolute entropy) constantg

5
2
þ ln½ðmukT1=2πℏ2Þ3=2kT1=p0�

T1 ¼ 1 K, p0 ¼ 100 kPa S0=R −1.151 707 537 06ð45Þ 3.9 × 10−10

or standard-state pressure
T1 ¼ 1 K, p0 ¼ 101.325 kPa

or standard atmosphere
−1.164 870 523 58ð45Þ 3.9 × 10−10

Stefan-Boltzmann constant ðπ2=60Þk4=ℏ3c2 σ 5.670 374 419… × 10−8 Wm−2 K−4 exact
first radiation constant for spectral

radiance 2hc2 sr−1
c1L 1.191 042 972… × 10−16 ½Wm2 sr−1�h exact

first radiation constant 2πhc2 ¼ π sr c1L c1 3.741 771 852… × 10−16 ½Wm2�h exact
second radiation constant hc=k c2 1.438 776 877… × 10−2 [m K]b exact
Wien displacement law constants

b ¼ λmaxT ¼ c2=4.965 114 231… b 2.897 771 955… × 10−3 [m K]b exact
b0 ¼ νmax=T ¼ 2.821 439 372…c=c2 b0 5.878 925 757… × 1010 Hz K−1 exact
aThe energy of a photon with frequency ν expressed in unit Hz is E ¼ hν in unit J. Unitary time evolution of the state of this photon is

given by expð−iEt=ℏÞjφi, where jφi is the photon state at time t ¼ 0 and time is expressed in unit s. The ratio Et=ℏ is a phase.
bThe full description of m−1 is cycles or periods per meter and that of m is meters per cycle (m=cycle). The scientific community is

aware of the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus
cycles=s. No solution has been agreed upon.

cValue recommended by the Particle Data Group (Tanabashi et al., 2018).
dBased on the ratio of the masses of the W and Z bosons mW=mZ recommended by the Particle Data Group (Tanabashi et al., 2018).

The value for sin2 θW they recommend, which is based on a variant of the modified minimal subtraction ðMSÞ scheme, is sin2θ̂WðMZÞ ¼
0.231 22ð4Þ.

eThis and other constants involvingmτ are based onmτc2 in MeV recommended by the Particle Data Group (Tanabashi et al., 2018).
fThe relative atomic mass ArðXÞ of particle X with mass mðXÞ is defined by ArðXÞ ¼ mðXÞ=mu, where mu ¼ mð12CÞ=12 ¼ 1 u is

the atomic mass constant and u is the unified atomic mass unit. Moreover, the mass of particle X ismðXÞ ¼ ArðXÞ u and the molar mass
of X is MðXÞ ¼ ArðXÞMu, where Mu ¼ NA u is the molar mass constant and NA is the Avogadro constant.

gThe entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S ¼ S0 þ 3
2
R lnAr − R lnðp=p0Þ þ 5

2
R lnðT=KÞ.

hThe full description of m2 is m−2 × ðm=cycleÞ4. See also the second footnote.
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The second 2018 HUST experiment used the angular
acceleration feedback (AAF) method where turntables rotate
a torsion pendulum and source masses independently at
nominally constant but opposite and different rotation
rates. Feedback control compensates for gravitational torque
acting on the rotating torsion pendulum such that the
pendulum does not move with respect to its rotating frame.
The difference in rotation rate of the source masses’ and
pendulum’s turntables is held constant by a second feedback
controller. For infinite feedback gain, the angular acceleration
of the torsion pendulum’s turntable is identical to the
gravitational angular acceleration generated by the source
masses and effects of environmental gravitational forces are
minimized.
The final result for G based on AAF, here labeled

HUSTA-18, combines values from data sets AAF-I, AAF-II,
and AAF-III. Set AAF-I had a different rotation rate from
AAF-II and AAF-III. A different research team obtained data
set AAF-III. For AAF-III, an improved pre-hanger fiber and
additional Mu-metal shielding around the torsion pendulum
were used as well. The largest uncertainty components for all
data sets were the horizontal and vertical distance determi-
nations between the geometric centers of the spherical source
masses, with relative uncertainties of 9.0 and 5.8 parts in 106,
respectively.
While the two HUST-18 results have the lowest uncertainty

of any measurements of G to date and agree with the 2018
recommended value within two standard uncertainties
of that value, the difference between the two new HUST
values is 2.7 times the standard uncertainty of their difference.

Furthermore, the HUSTT-18 and HUSTA-18 values of G
exceed the HUST-09 value by about 3.5 and 5.1 times the
standard uncertainty of their respective differences. Presently,
there are no explanations for the inconsistencies.

XX. ELECTROWEAK QUANTITIES

There are a few cases in the 2018 adjustment, as in
previous adjustments, where an inexact constant is used in
the analysis of input data but not treated as an adjusted
quantity, because the adjustment has a negligible effect on its
value. Three such constants, used in the calculation of the
theoretical expression for the electron magnetic-moment
anomaly ae, are the mass of the tau lepton mτ, the Fermi
coupling constant GF, and sine squared of the weak mixing
angle sin2 θW. These are electroweak quantities with values
obtained from the most recent report of the Particle Data
Group (Tanabashi et al., 2018):

mτc2 ¼ 1776.86ð12Þ MeV ½6.8 × 10−5�; ð202Þ

GF

ðℏcÞ3 ¼ 1.166 3787ð6Þ × 10−5 GeV−2 ½5.1 × 10−7�; ð203Þ

sin2θW ¼ 0.222 90ð30Þ ½1.3 × 10−3�: ð204Þ

We note that sin2 θW ¼ 1 − ðmW=mZÞ2, where mW and mZ

are the masses of the W� and Z0 bosons, respectively. The
Particle Data Group’s value mW=mZ ¼ 0.881 53ð17Þ leads to

TABLE XXXII. The relative uncertainties and correlation coefficients of the values of a selected group of constants based on the 2018
CODATA adjustment. The numbers in bold on the diagonal are the relative uncertainties urðxiÞ ¼ uðxiÞ=xi; the other numbers are the
correlation coefficients rðxi; xjÞ ¼ uðxi; xjÞ=½uðxiÞuðxjÞ�. Here, uðxi; xjÞ is the covariance of xi and xj and u2ðxiÞ ¼ uðxi; xiÞ is the variance.

α R∞ me=mp rp rd me=mμ mu

α 1.5 × 10−10 0.002 07 −0.031 03 0.003 45 0.003 20 −0.013 45 −0.995 35
R∞ 0.002 07 1.9 × 10−12 0.012 06 0.885 92 0.903 66 −0.000 11 0.003 69
me=mp −0.031 03 0.012 06 6.0 × 10−11 −0.005 28 0.011 13 0.000 45 −0.015 54
rp 0.003 45 0.885 92 −0.005 28 2.2 × 10−3 0.991 65 −0.000 12 0.002 38
rd 0.003 20 0.903 66 0.011 13 0.991 65 3.5 × 10−4 −0.000 12 0.002 30
me=mμ −0.013 45 −0.000 11 0.000 45 −0.000 12 −0.000 12 2.2 × 10−8 0.013 38
mu −0.995 35 0.003 69 −0.015 54 0.002 38 0.002 30 0.013 38 3.0 × 10−10

TABLE XXXIII. Values of some x-ray-related quantities based on the 2018 CODATA adjustment of the constants.

Quantity Symbol Value Unit
Relative std.
uncert. ur

Cu x unit: λðCuKα1Þ=1537.400 xuðCuKα1Þ 1.002 076 97ð28Þ × 10−13 m 2.8 × 10−7

Mo x unit: λðMoKα1Þ=707.831 xuðMoKα1Þ 1.002 099 52ð53Þ × 10−13 m 5.3 × 10−7

Ångström star: λðWKα1Þ=0.209 010 0 Å� 1.000 014 95ð90Þ × 10−10 m 9.0 × 10−7

Lattice parametera of Si (in vacuum, 22.5 °C) a 5.431 020 511ð89Þ × 10−10 m 1.6 × 10−8

f220g lattice spacing of Si a=
ffiffiffi
8

p
(in vacuum, 22.5 °C) d220 1.920 155 716ð32Þ × 10−10 m 1.6 × 10−8

Molar volume of Si MðSiÞ=ρðSiÞ ¼ NAa3=8
(in vacuum, 22.5 °C)

VmðSiÞ 1.205 883 199ð60Þ × 10−5 m3 mol−1 4.9 × 10−8

aThis is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si with natural isotopic Si
abundances, free of impurities and imperfections.
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the value of sin2 θW already given. The uncertainty of this
mass ratio has decreased by almost a factor of ten when
compared to that in the 2014 adjustment. Finally, the accuracy
of the mass of the tau lepton has slightly improved.

XXI. THE 2018 CODATA RECOMMENDED VALUES

The input data and their correlation coefficients considered
in the 2018 CODATA adjustment of the values of the
constants are given in Tables VIII, X, XVIII, XXI, XXVII,
and XXIX. (Here, items C3–C6 in Table XVIII are additional
theoretical coefficients and not input data.) The data have been
discussed and explained in detail in the previous sections. The
2018 recommended values are calculated from the set of best
estimated values, in the least-squares sense, of 75 adjusted
constants listed in Tables XI and XIX. A comparison with the

values of the adjusted constants in Tables XXV and XXVI of
the 2014 CODATA adjustment shows that two prominent
quantities among the few that are no longer adjusted constants
are the Planck constant h and the molar gas constant R.
The reason, of course, is that in the revised SI these constants
are exactly known.
The methodology and quality of our least-squares adjust-

ments has been discussed in Sec. III. Briefly, three indepen-
dent adjustments have been performed. The first concerned
the Newtonian constant of gravitation. The corresponding
input data are found to be inconsistent and an expansion factor
of 3.9 is needed to decrease the residuals to below two. The
second independent adjustment concerned the determination
of the natural-silicon lattice spacing and values of three
historic x-ray units. No expansion factor is needed. Finally,
the third adjustment determined the remaining 62 adjusted

TABLE XXXIV. Non-SI units based on the 2018 CODATA adjustment of the constants, although eV and u are accepted for use with the SI.

Quantity Symbol Value Unit
Relative std.
uncert. ur

electron volt: (e=C) J eV 1.602 176 634 × 10−19 J exact
(unified) atomic mass unit: 1

12
mð12CÞ u 1.660 539 066 60ð50Þ × 10−27 kg 3.0 × 10−10

Natural units (n.u.)
n.u. of velocity c 299 792 458 m s−1 exact
n.u. of action ℏ 1.054 571 817… × 10−34 J s exact

6.582 119 569… × 10−16 eV s exact
ℏc 197.326 980 4… MeV fm exact

n.u. of mass me 9.109 383 7015ð28Þ × 10−31 kg 3.0 × 10−10

n.u. of energy mec2 8.187 105 7769ð25Þ × 10−14 J 3.0 × 10−10

0.510 998 950 00(15) MeV 3.0 × 10−10

n.u. of momentum mec 2.730 924 530 75ð82Þ × 10−22 kgm s−1 3.0 × 10−10

0.510 998 950 00(15) MeV=c 3.0 × 10−10

n.u. of length: ℏ=mec ƛC 3.861 592 6796ð12Þ × 10−13 m 3.0 × 10−10

n.u. of time ℏ=mec2 1.288 088 668 19ð39Þ × 10−21 s 3.0 × 10−10

Atomic units (a.u.)
a.u. of charge e 1.602 176 634 × 10−19 C exact
a.u. of mass me 9.109 383 7015ð28Þ × 10−31 kg 3.0 × 10−10

a.u. of action ℏ 1.054 571 817… × 10−34 J s exact
a.u. of length: Bohr radius (bohr)

ℏ=αmec
a0 5.291 772 109 03ð80Þ × 10−11 m 1.5 × 10−10

a.u. of energy: Hartree energy (hartree)
α2mec2 ¼ e2=4πϵ0a0 ¼ 2hcR∞

Eh 4.359 744 722 2071ð85Þ × 10−18 J 1.9 × 10−12

a.u. of time ℏ=Eh 2.418 884 326 5857ð47Þ × 10−17 s 1.9 × 10−12

a.u. of force Eh=a0 8.238 723 4983ð12Þ × 10−8 N 1.5 × 10−10

a.u. of velocity: αc a0Eh=ℏ 2.187 691 263 64ð33Þ × 106 ms−1 1.5 × 10−10

a.u. of momentum ℏ=a0 1.992 851 914 10ð30Þ × 10−24 kg m s−1 1.5 × 10−10

a.u. of current eEh=ℏ 6.623 618 237 510ð13Þ × 10−3 A 1.9 × 10−12

a.u. of charge density e=a30 1.081 202 384 57ð49Þ × 1012 Cm−3 4.5 × 10−10

a.u. of electric potential Eh=e 27.211 386 245 988(53) V 1.9 × 10−12

a.u. of electric field Eh=ea0 5.142 206 747 63ð78Þ × 1011 Vm−1 1.5 × 10−10

a.u. of electric field gradient Eh=ea20 9.717 362 4292ð29Þ × 1021 Vm−2 3.0 × 10−10

a.u. of electric dipole moment ea0 8.478 353 6255ð13Þ × 10−30 C m 1.5 × 10−10

a.u. of electric quadrupole moment ea20 4.486 551 5246ð14Þ × 10−40 Cm2 3.0 × 10−10

a.u. of electric polarizability e2a20=Eh 1.648 777 274 36ð50Þ × 10−41 C2 m2 J−1 3.0 × 10−10

a.u. of 1st hyperpolarizability e3a30=E
2
h 3.206 361 3061ð15Þ × 10−53 C3 m3 J−2 4.5 × 10−10

a.u. of 2nd hyperpolarizability e4a40=E
3
h 6.235 379 9905ð38Þ × 10−65 C4 m4 J−3 6.0 × 10−10

a.u. of magnetic flux density ℏ=ea20 2.350 517 567 58ð71Þ × 105 T 3.0 × 10−10

a.u. of magnetic dipole moment: 2μB ℏe=me 1.854 802 015 66ð56Þ × 10−23 J T−1 3.0 × 10−10

a.u. of magnetizability e2a20=me 7.891 036 6008ð48Þ × 10−29 J T−2 6.0 × 10−10

a.u. of permittivity e2=a0Eh 1.112 650 055 45ð17Þ × 10−10 Fm−1 1.5 × 10−10
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constants. Two expansion factors are required. A factor of 1.6
is applied to the 60 input data determining the Rydberg
constant and proton and deuteron charge radii. A factor of
1.7 is used for the two input data that determine the mass of
the proton. As in previous adjustments, we have not excluded
input data that individually contribute little to constrain the
adjusted constants but taken together do matter. Good exam-
ples of such data are transition energies in atomic hydrogen to
states with large principal quantum numbers as well as the
less-accurate experimental data on the Newtonian constant of
gravitation.

A. Tables of values

Tables XXX through XXXVI give the 2018 CODATA
recommended values of the basic constants and conversion
factors of physics and chemistry and related quantities. Energy
conversion factors in Tables XXXV and XXXVI relate
energies, masses, photon wavelengths and frequencies, and
temperatures of ensembles of particles through the equiva-
lences E ¼ mc2 ¼ hc=λ ¼ hν ¼ kT. The tables are identical
in form and content to their 2010 and 2014 counterparts in that
no constants are added or deleted. They also show the
profound impact the revised SI has on the values of the
fundamental constants. Counting the energy conversion fac-
tors in Tables XXXV and XXXVI, 46 constants that had
uncertainties in 2014 are now exactly known in the revised SI.
Values of the constants and correlation coefficients between
any pair of constants can also be found at the website http://
physics.nist.gov/constants.

XXII. SUMMARY AND CONCLUSION

In this final section, we discuss (i) the differences between
the 2014 and 2018 CODATA recommended values of the
constants, (ii) the implications of the 2018 adjustment for
metrology and physics, and (iii) future work that could
improve our knowledge of the values of the constants.

A. Comparison of 2014 and 2018 CODATA recommended values

A representative group of 2014 and 2018 recommended
values are compared in Fig. 10. The first four constants h, e, k,
and NA are exact because of the redefinition of the SI. All
other constants were and are inexactly known. Some have
become significantly more accurate, some have updated
values that fall well outside their 2014 uncertainty, while
others have seen no significant change. Changes are a
consequence of the revision of the SI and measurements that
have become available since the 2014 adjustment. We discuss
the changes shown in the figure as well as other notable
changes in some detail later.
Not included in Fig. 10 are those few constants that were

exactly known before the adoption of the revised SI in 2018.
These are the universal constants μ0, ϵ0, and Z0, as well as
the physicochemical constants Mð12CÞ and Mu. Their current
differences from their previous exact values may be
conveniently expressed in the form μ0=ð4π × 10−7 N A−2Þ ¼
1 þ 55ð15Þ × 10−11 and Mð12CÞ=ð0.012 kgmol−1Þ ¼ 1 –
35ð30Þ × 10−11, where the numbers in parentheses are their

2018 standard uncertainties. [The number þ55ð15Þ is the
same for Z0 ¼ μ0c but is −55ð15Þ for ϵ0 ¼ 1=μ0c2;
the number −35ð30Þ is the same for Mu.] The mass of the
international prototype of the kilogram mðKÞ and the temper-
ature at the triple point of water TTPW were also exactly known
before the adoption of the revised SI, but they are not adjusted
constants in the 2018 adjustment.
In the revised SI, h, e, k, and NA are defining constants with

exact values and the values of the previously exactly known SI
defining constants μ0, Mð12CÞ, mðKÞ, and TTPW must now be
determined experimentally. The exact values of h, e, k, and
NA are based on the results of the 2017 CODATA Special
Adjustment carried out by the Task Group at the request of the
General Conference onWeights and Measures (CGPM) with a
closing date for data of 1 July 2017 (Mohr et al., 2018; Newell
et al., 2018). Based on the input data available then, the exact
values for h, e, k, and NA had to fall within the one-standard-
deviation uncertainty of their then inexact values. The precise
criteria can be found in CIPM (2016, 2017). Conversely, the
criteria implied that the values and uncertainties of the newly
imprecise μ0 andMð12CÞwere consistent with their previously
exact values.
After the 1 July 2017 closing date of the 2017 CODATA

Special Adjustment, a measurement of h=mð133CsÞ (item D4
in Table XXI) further constrained the value of the fine-
structure constant α. This additional input datum has led to
a larger deviation of μ0 ¼ 4παℏ=e2c and Mð12CÞ from their
previous exact values.
The significantly reduced uncertainties of R∞, rp, and rd

and shifts of the values compared with their 2014 counter-
parts are due to improvements in theory, new measurements
of hydrogen transition frequencies, and the inclusion of
Lamb-shift measurements in muonic hydrogen and deu-
terium. The latter were not included in the 2014 CODATA
adjustment because of inconsistencies between the values of
rp and rd derived from them and those obtained from
hydrogen and deuterium spectroscopic data and e-p and
e-d scattering data. Nevertheless, it must be recognized that
although including the muonic hydrogen and deuterium
data as well as new hydrogen spectroscopic data have led
to values of R∞, rp, and rd with significantly smaller
uncertainties, the remaining inconsistencies among the 62
data primarily responsible for the determination of these
constants required their uncertainties to be increased by the
multiplicative factor 1.6 to reduce all normalized residuals to
less than 2.
The relative uncertainty urðEhÞ of the Hartree energy

Eh ¼ 2R∞hc is now simply that due to the Rydberg constant
rather than that of the Planck constant as was the case in the
2014 CODATA adjustment. The uncertainty of the Hartree
energy is now 6300 times smaller.
The reduction of the uncertainty of α by a factor of 1.5 to

urðαÞ ¼ 1.5 × 10−10 is mainly due to the measurement of
h=mð133CsÞ. The uncertainties of many other constants are
directly linked to that of α. Examples are, of course, μ0, but
also the Bohr radius a0, electron mass me, Compton wave-
length λC, and Thomson cross section σe. Their relative
uncertainties are 1, 1, 2, 2, and 6 times that of α, respectively.
The latter four constants also depend on the Rydberg constant
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R∞, but its relative uncertainty of 1.9 × 10−12 is much smaller
than that of α.
The reduction in the uncertainty of G is due to two new

and independent results from HUST in the People’s Republic
of China, both with urðGÞ ¼ 1.2 × 10−5 (HUSTT-18 and
HUSTA-18 in Table XXIX); and a correction of a previously
available result (JILA-18 in Table XXIX). This led to a better
consistency among the 16 input data for G and a reduction of
the applied expansion factor of their uncertainties from 6.3 in
2014 to 3.9 in the current CODATA adjustment.
The relations 1 u ¼ mu ¼ mð12CÞ=12 for the atomic mass

unit and Arð12CÞ ¼ 12 for the relative atomic mass of 12C
remain exact in the revised SI. The mass mu in kg, however, is
now obtained from mu ¼ 2R∞h=ArðeÞcα2 instead of
mu ¼ ð10−3 kg=molÞ=NA. Consequently, the relative uncer-
tainty of mu in the 2018 adjustment is essentially twice that of
α or 3.0 × 10−10, because urðR∞Þ and ur(ArðeÞ) are signifi-
cantly smaller than urðαÞ. This relative uncertainty of mu is 41
times smaller than in the 2014 adjustment, where it was
dominated by the relative uncertainty of NA.

Generally, the mass of a particle X in kg is most reliably
determined from mðXÞ ¼ ArðXÞmu, where the relative uncer-
tainty of ArðXÞ for most particles of interest here is signifi-
cantly smaller than that ofmu. Hence the ur ofme,mp,md,mt,
mh, andmα when expressed in kg are now essentially the same
as that of mu.
The significant reductions of the uncertainties of magnetic

moments μB, μN, and μe can be understood from their
definitions. The Bohr magneton μB ¼ eℏ=2me now has the
relative uncertainty of that of the electron mass. By compari-
son, in the 2014 CODATA adjustment ur of μB is 6.3 × 10−9

or 20 times larger. Similarly, the nuclear magneton μN ¼
eℏ=2mp has the relative uncertainty of that of mp or mu.
Because the ratio μe=μB ¼ ge=2 and the ur of the 2018 and
2014 CODATA recommended values of the electron g-factor
ge are 1.7 × 10−13 and 2.6 × 10−13, respectively, the relative
uncertainty of μe is essentially the same as that for μB.
The value of the magnetic moment of the proton μp has

been improved due to a new measurement of the ratio μp=μN.
For this measurement, ur ¼ 2.9 × 10−10. Together with the
improved value of μN, it provides a value of μp with
ur ¼ 4.2 × 10−10. Similarly, the uncertainty μp=μB has seen
a tenfold improvement, as μp=μB ¼ μp=μN ×me=mp and
me=mp has a relative uncertainty of 6.0 × 10−11.
The input data that determine the 2018 CODATA recom-

mended value of ArðpÞ are the 2016 AMDC value of Arð1HÞ
and the cyclotron frequency ratio ωcð12C6þÞ=ωcðpÞ (item D15
in Table XXI). The two values for ArðpÞ from these data
disagree, and an expansion factor of 1.7 is applied to their
uncertainties to bring them into agreement.
The comparatively large difference between the 2018 and

2014 values of the helion relative atomic mass, ArðhÞ, is due to
the inclusion of a new value of the cyclotron frequency ratio
ωcðHDþÞ=ωcð3HeþÞ (item D17 in Table XXI) and omission of
the cyclotron frequency ratio ωcðhÞ=ωcð12C6þÞ used in 2014,
because of concerns about its reliability. The relative atomic
mass of the triton has changed based on a 2015 measurement
(item D16 in Table XXI). No new datum has become available
to determine ArðeÞ, ArðdÞ, and ArðαÞ.
The magnetic moment of the neutron μn and ratios μn=μN

and μn=μp are determined from the same input datum, namely,
μn=μ0p with ur ¼ 2.4 × 10−7 obtained in 1979 (item D37 in
Table XXI). The 2018 values and uncertainties of these
three quantities are essentially the same as in the 2014
adjustment. The magnetic moment of the deuteron μd and
ratios μd=μN and μd=μe have a ur of 2.6 × 10−9, which is about
one-half that of their 2014 ur. The reason is the presence of an
additional input datum for the ratio μpðHDÞ=μdðHDÞ with
ur ¼ 3.1 × 10−9.
One of the consequences of the revised SI is that the

conversion factors among the energy units J, kg, m−1, Hz, K,
and eVare now exact based on E ¼ mc2 ¼ ℏc=λ ¼ hν ¼ kT.
The conversion factor between these six units and the unified
atomic mass unit, 1 u ¼ mu, is determined by mu and exact
constants. Hence, the relative uncertainties of the six corre-
sponding conversion factors are now that ofmu or 3.0 × 10−10.
This corresponds to a significant improvement compared to
the 2014 recommended conversion factor. For example, the
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FIG. 10. Comparison of a representative group of fundamental
constants from the 2014 and 2018 CODATA adjustments.
Symbols of constants are shown along the y axis. Along the
x axis the 2018 recommended values and their one-standard-
deviation uncertainty, black circles with error bars, are shown as
the difference between the 2018 and 2014 values divided by the
standard uncertainty of the 2014 value. The vertical solid red line
at the origin and yellow/orange band of width 1 represent the
2014 values and standard uncertainties of the indicated constants.
The numerical values near the left-hand side of the figure are the
relative standard uncertainties from the 2018 adjustment.
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uncertainty of the eV-to-u conversion factor is reduced by a
factor of 20.
The situation is similar for the conversion factors from the

six energy units to the Hartree energy Eh ¼ 2R∞hc, but in this
case the relevant constant is R∞ with ur ¼ 1.9 × 10−12 rather
than mu. As another example, the uncertainty of the K-to-Eh

conversion factor is reduced from 5.7 × 10−7 in 2014 to 1.9 ×
10−12 in 2018, or by a factor of 3 × 105.

B. Implications of the 2018 adjustment for metrology and physics

1. Electrical metrology

The most significant practical impact of the revised SI is
undoubtedly the elimination of the conventional 1990 elec-
trical units that went into effect on 1 January 1990 to ensure
the international consistency of electrical measurements.
(See https://www.bipm.org/en/publications/si-brochure.) After
thirty years, electrical measurements are once more consistent
with measurements made in the other units of the SI.
Electrical units have become part of the SI again, simply

because the Josephson and von Klitzing constants are now
exact in SI units. Between 1990 and the adoption of the revised
SI in 2019, the units of voltage and resistance, V90

and Ω90, were based on the conventional values KJ−90 ¼
483 597.9 GHz=V and RK−90 ¼ 25 812.807 Ω for the
Josephson and von Klitzing constants, respectively. From
2019 onward, the ratios between KJ ¼ 2e=h and KJ−90
and between RK ¼ h=e2 and RK−90 are exact. Thus,
1 V90 ¼ ðKJ−90=KJÞ V and 1 Ω90 ¼ ðRK=RK−90Þ Ω exactly.
Consequently, the conventional electric units for voltage,
resistance, current, charge, power, capacitance, inductance,
electrical conductance, magnetic flux, and magnetic flux
density in terms of the corresponding SI units are

1 V90 ¼
KJ−90

KJ
V ¼ ½1þ 10.666… × 10−8� V;

1 Ω90 ¼
RK

RK−90
Ω ¼ ½1þ 1.7793… × 10−8� Ω;

1 A90 ¼
KJ−90RK−90

KJRK
A ¼ ½1þ 8.8871… × 10−8� A;

1 C90 ¼
KJ−90RK−90

KJRK
C ¼ ½1þ 8.8871… × 10−8� C;

1 W90 ¼
K2

J−90RK−90

K2
JRK

W ¼ ½1þ 19.553… × 10−8� W;

1 F90 ¼
RK−90

RK
F ¼ ½1 − 1.7793… × 10−8� F;

1 H90 ¼
RK

RK−90
H ¼ ½1þ 1.7793… × 10−8� H;

1 S90 ¼
RK−90

RK
S ¼ ½1 − 1.7793… × 10−8� S;

1 Wb90 ¼
KJ−90

KJ
Wb ¼ ½1þ 10.666… × 10−8� Wb;

1 T90 ¼
KJ−90

KJ
T ¼ ½1þ 10.666… × 10−8� T:

Thus, for example, the 1990 conventional unit of voltage V90

exceeds the SI unit of voltage V by the fractional amount

10.666… × 10−8. This implies that a voltage measured in the
unit V90 will have a numerical value that is smaller by this
fractional amount than the numerical value of the same voltage
measured in the SI volt V. (The 1990 conventional units are
viewed as physical quantities and, hence, their symbols are
written in italic type.)

2. Electron magnetic-moment anomaly, fine-structure constant,
and QED theory

The electron magnetic-moment anomaly ae has for many
years provided fertile ground for testing QED and obtaining
an accurate value of α. Within QED, ae is a function of α with
weak and strong interaction contributions that are compara-
tively small and readily calculated, totaling at present a
fractional contribution of 14.86ð10Þ × 10−10 to ae. By com-
parison, the relative uncertainty of the measured ae is
2.4 × 10−10, based on a determination of the ratio of the
cyclotron and precession frequencies of a single electron in an
applied magnetic flux density.
A convenient way of verifying QED theory is to calculate α

that results from equating the theoretical expression for ae
with the experimental value and then comparing it with values
obtained from experiments that only weakly depend on QED
theory. Two such values are available from interferometric
measurements with laser-cooled 87Rb and 133Cs atoms.
The result of the comparison is that α−1 from the single-

electron experiment exceeds the value from the 87Rb and 133Cs
interferometric experiments by 1.7σ and 2.4σ, respectively.
Here, σ is the square root of the sum of the squares of the
corresponding pair of uncertainties in α−1. The 2.4σ disagree-
ment is mild, but discomforting.
The two leading experimental groups that determined α−1

from atom interferometry are carrying out new experiments
that should yield values with significantly reduced uncertain-
ties (Cladé et al., 2019; Yu et al., 2019). In addition, G.
Gabrielse is constructing a significantly improved version of
his single-electron experiment (Gabrielse et al., 2019). The

group that has calculated the Að10Þ
1 coefficient in the theoretical

expression of ae is continuing its work and has recently

reported Að10Þ
1 ¼ 6.737ð159Þ (Aoyama, Kinoshita, and Nio,

2019). The results of all efforts are anxiously awaited.

3. Proton radius and Rydberg constant

The “proton-radius puzzle” has been with us ever since the
2010 publication of the charge radius of the proton rp obtained
from the measurement of the Lamb shift in muonic hydrogen
μH (an atom comprised of a proton and a muon). The severe
discrepancy between the μH value of rp and the values of rp
obtained from hydrogen transition frequency data and e-p
elastic scattering data led to the omission of the μH result from
2010 and 2014 CODATA adjustments
A Lamb-shift measurement in muonic deuterium μD (an

atom comprised of a deuteron and a muon) provided a charge
radius of the deuteron rd that, like the μH value of rp, was
smaller than the deuterium spectroscopic and e-d scattering
value and inconsistent with it. This disagreement was also
deemed too significant, and the μD data were not included in
the CODATA adjustments.
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The situation has improved markedly over the past four
years, and the μH as well as recent μD data are now included
in the 2018 CODATA adjustment. New hydrogen spectro-
scopic data and advances in theoretical estimates of transition
frequencies contributed to this decision. As a result, the 2018
recommended values of rp, rd, and R∞ and their uncertainties
are significantly smaller than in the 2014 CODATA adjust-
ment. The value of rp is reduced by 3.8% and its uncertainty is
reduced from 0.70% to 0.22%; rd is reduced by 0.62% and its
uncertainty from 0.12% to 0.035%; and for R∞ the reduction
in value is fractionally 32 × 10−12 and ur is reduced from
5.9 × 10−12 to 1.9 × 10−12.
We can conclude that the proton-radius puzzle has largely

been resolved. Nevertheless, the uncertainties of the many
input data that contribute to the determination of the charge
radii and Rydberg constant had to be increased by a expansion
factor of 1.6 in order to ensure that the residuals of these input
data are less than two.
New data will be required to obtain further insight into the

origin of the remaining discrepancies. In fact, after the closing
date for the 2018 CODATA adjustment, new values for rp
based on an improved e-p scattering experiment have become
available. Avalue of rp ¼ 0.831ð14Þ fm was recently reported
by Xiong et al. (2019) from the Jefferson Laboratory, Virginia,
USA. The result is smaller than, but consistent with, the 2018
CODATA recommended value and the work is expected to
continue.
Electron-proton scattering experiments are also being

carried out at the Mainz Microtron (MAMI) particle accel-
erator in Germany. In 2019, it already led to the reported value
rp ¼ 0.870ð28Þ fm (Mihovilovič et al., 2017, 2019). This
value is larger than but consistent with, the 2018 CODATA
recommended value. A second MAMI experiment is under
construction and planned to begin operation in 2020
(Vorobyev, 2019). Finally, we mention an experiment under-
way at the Paul Scherrer Institut, Switzerland, in which rp will
be determined from simultaneous measurements of muon-
proton and electron-proton scattering (Roy et al., 2020).

4. Muon mass and magnetic moment

The values for the mass mμ and magnetic-moment anomaly
aμ of the muon are essentially unchanged from the 2010 and
2014 adjustments. Their values are determined by experi-
mental measurements published in 1999 and 2006 and have a
relative uncertainty of 2.2 × 10−8 and 5.4 × 10−7, respec-
tively. The muon mass is derived from measurements and
accurate theoretical calculations of the hyperfine splitting of
the ground state of muonium μþe−. New data on this hyper-
fine splitting are expected in the near future (Strasser
et al., 2019).
The theoretical estimate of the muon magnetic-moment

anomaly aμðthÞ has been discrepant with the experimental
value ever since the 2006 measurement; see Fig. 8. The
experimental value aμðexpÞ currently exceeds the theoretical
value by about 3.5σ, and models using physics beyond the
standard model (SM) have been put forward to explain the
discrepancy. Since mμ=me is about 207, aμðthÞ is more
sensitive to possible non-SM contributions than the electron

magnetic-moment anomaly ae. Because of the significant
inconsistency, the theoretical expression for the muon
anomaly as in previous adjustments is not used in the 2018
CODATA adjustment.
Two separate experiments (Abe et al., 2019; Keshavarzi,

2019) are underway to determine aμ, promising one-fourth the
uncertainty of the current value. Work also continues to
improve the theoretical SM expression for aμ (Keshavarzi,
Nomura, and Teubner, 2018). The hope is that the discrepancy
will be resolved by the closing date for the next adjustment.

5. Newtonian constant of gravitation

The Newtonian constant of gravitation G, with its 2.2 ×
10−5 relative uncertainty, is among the most poorly known
constants in our 2018 adjustment. See the discussion of Fig. 9.
The large scatter among the 16 measurements of G on which
the recommended value is based required an expansion factor
of 3.9 to reduce all residuals to less than two.
The need for an expansion factor demonstrates the tech-

nological difficulty of determining G. Improving our knowl-
edge of G may ultimately require the development of a new
approach that can achieve an uncertainty no greater than one
part in 106, smaller than the uncertainty of previously reported
values by more than an order of magnitude (Rothleitner and
Schlamminger, 2017). In addition, such technology could
shed light on the reasons for the scatter among the existing
data, such as the discovery of previously unknown systematic
effects in the measurement methods, and would likely find
other useful applications.
Rothleitner and Schlamminger (2017) also suggested that

moving an apparatus from a laboratory where it was used to
determine G to another laboratory could help uncover
unrecognized systematic effects. To this end, the BIPM
apparatus that led to the publication in 2014 of a value of
G with ur ¼ 2.4 × 10−5 is now operational at the NIST
Gaithersburg laboratory.

6. Proton mass

The relative atomic mass of hydrogen, Arð1HÞ, from the
Atomic Mass Data Center and a measurement of the cyclotron
frequency ratio, ωcð12C6þÞ=ωcðpÞ, determine ArðpÞ. In the
2018 adjustment, the uncertainties of these input data are
expanded by the factor 1.7 to reduce their normalized
residuals to less than two. The value of Arð1HÞ is based on
relatively old data and constrains the value of the proton mass
less than that determined by the cyclotron frequency ratio. See
also Fig. 6. An independent determination of ArðpÞ with ur of
a few parts in 1011 would help resolve the discrepancy.

7. Physics in general

The 2017 redefinition of the SI has arguably been a
milestone in physics and chemistry. As a consequence, many
constants in our tables that previously had uncertainties are
now exactly known in SI units. Many more have significantly
reduced uncertainties. The physicochemical constants that are
now exact in addition to NA and k are, for example, F, R, Vm,
and σ. The 30 conversion factors among the six energy units
J, kg, m−1, Hz, K, and eV are now exact and the relative
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uncertainties of their conversion factors with u and Eh are
currently only 3.0 × 10−10 and 1.9 × 10−12, respectively.
Further, ur of α and R∞ are now 1.5×10−10 and 1.9 × 10−12,
respectively.
A perusal of the input data in Table XXI shows there is only

one input datum for some quantities, and some are decades
old. Measurements of the same quantity by different methods
in different laboratories help to identify unknown systematic
effects, thereby improving the reliability of the input data. The
six magnetic-moment ratios, items D32 to D37 in the table,
are obvious examples of old data. The muon mass is currently
only determined by essentially one measurement. It would be
useful if researchers kept in mind the limited robustness of the
data set on which CODATA adjustments are based in planning
research.

LIST OF SYMBOLS AND ABBREVIATIONS

ASD NISTAtomicSpectraDatabase (online)
AMDC Atomic Mass Data Center, Institute of

Modern Physics, Chinese Academy
of Sciences, Lanzhou, People’s Re-
public of China. AMDC-16 is the
atomic mass evaluation completed
in 2016, the most recent available.

ArðXÞ Relative atomic mass of X: ArðXÞ ¼
mðXÞ=mu

a0 Bohr radius: a0 ¼ ℏ=αmec
ae Electron magnetic-moment anomaly:

ae ¼ ðjgej − 2Þ=2
aμ Muon magnetic-moment anomaly:

aμ ¼ ðjgμj − 2Þ=2
Berkeley University of California at Berkeley,

Berkeley, California, USA
BIPM International Bureau of Weights and

Measures, Sèvres, France
BNL Brookhaven National Laboratory,

Upton, New York, USA
CGPM General Conference on Weights and

Measures
CIPM International Committee for Weights

and Measures
CODATA Committee onData of the International

Science Council
CREMA The international collaborationCharge

Radius Experiment withMuonic Atoms
at the Paul Scherrer Institute, Villigen,
Switzerland

c Speed of light in vacuum and one of
the seven defining constants of the SI

d Deuteron (nucleus of deuterium D,
or 2H)

d220 f220g lattice spacing of an ideal
silicon crystal with natural isotopic
Si abundances

d220ðXÞ f220g lattice spacing of crystal X
of silicon with natural isotopic Si
abundances

Eh Hartree energy: Eh¼2R∞hc¼α2mec2

e Symbol for either member of the
electron-positron pair; when neces-
sary, e− or eþ is used to indicate
the electron or positron

e Elementary charge: absolute value of
the charge of the electron and one of
the seven defining constants of the SI

FSU Florida State University, Tallahassee,
Florida, USA

FSUJ Friedrich-Schiller University, Jena,
Germany

G Newtonian constant of gravitation
GF Fermi coupling constant
gd Deuteron g-factor: gd ¼ μd=μN
ge Electron g-factor: ge ¼ 2μe=μB
gp Proton g-factor: gp ¼ 2μp=μN
g0p Shielded proton g-factor: g0p ¼ 2μ0p=μN
gt Triton g-factor: gt ¼ 2μt=μN

gXðYÞ g-factor of particle X in the ground
(1S) state of hydrogenic atom Y

gμ Muon g-factor: gμ ¼ 2μμ=ðeℏ=2mμÞ
Harvard HarvU also. Harvard University,

Cambridge, Massachusetts, USA
HD A hydrogen-deuterium molecule
HT A hydrogen-tritium molecule

HUST Huazhong University of Science and
Technology, Wuhan, People’s Repub-
lic of China

h Helion (nucleus of 3He)
h Planck constant and one of the seven

defining constants of the SI
ℏ Reduced Planck constant

ILL Institut Max von Laue-Paul Langevin,
Grenoble, France

INRIM Istituto Nazionale di Ricerca Metro-
logica, Torino, Italy

JILA JILA, University of Colorado and
NIST, Boulder, Colorado, USA

J-PARC Japan Proton Accelerator Research
Complex

k Boltzmann constant and one of the
seven defining constants of the SI

KEK High Energy Accelerator Research
Organization, Tsukuba, Japan

LAMPF Clinton P. Anderson Meson Physics
Facility at Los Alamos National Labo-
ratory, LosAlamos,NewMexico,USA

LANL Los Alamos National Laboratory,
Los Alamos, New Mexico, USA
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LENS European Laboratory for Non-Linear
Spectroscopy, University of Florence,
Italy

LKB Laboratoire Kastler-Brossel, Paris,
France

MIT Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, USA

MPIK Max-Planck-Institut für Kernphysik,
Heidelberg, Germany

MPQ Max-Planck-Institut für Quantenop-
tik, Garching, Germany

MSL Measurement Standards Laboratory,
Lower Hutt, New Zealand

MðXÞ Molar mass of X: MðXÞ ¼ ArðXÞMu
Mð12CÞ Molar mass of carbon-12. Mð12CÞ ¼

12Mu ¼ 12NAmu ≈ 0.012 kg=mol
Mu Molar mass constant: Mu ¼ NAmu
Mu Muonium (μþe− atom)
mu Unified atomic mass constant: mu ¼

mð12CÞ=12 ¼ 2hcR∞=α2c2ArðeÞ
mðKÞ Mass of the international prototype of

the kilogram: mðKÞ ≈ 1 kg
mX, mðXÞ Mass of X (for the electron e, proton

p, and other elementary particles, the
first symbol is used, i.e., me, mp, etc.)

NA Avogadro constant and one of the
seven defining constants of the SI

NIST National Institute of Standards and
Technology, Gaithersburg, Maryland
and Boulder, Colorado, USA

NPL National Physical Laboratory,
Teddington, UK

n Neutron
pðχ2jνÞ Probability that an observed value of

chi square for ν degrees of freedom
would exceed χ2

p Proton
PTB Physikalisch-Technische Bundesanstalt,

Braunschweig and Berlin, Germany
QCD Quantum chromodynamics
QED Quantum electrodynamics

R Molar gas constant; R ¼ NAk
RB Birge ratio: RB ¼ ðχ2=νÞ12
R∞ Rydberg constant: R∞ ¼ mecα2=2h
ri Normalized residual of an input da-

tum Xi in a least-squares calculation:
ri ¼ ðXi − hXiiÞ=uðXiÞ

rd Bound-state rms charge radius of the
deuteron

rp Bound-state rms charge radius of the
proton

rðX; YÞ Correlation coefficient of quantity
or constant X and Y: rðX; YÞ ¼
uðX; YÞ=½uðXÞuðYÞ�

SI Système international d’unités
(International System of Units)

StPtrsb D. I.MendeleyevAll-RussianResearch
Institute for Metrology (VNIIM),
St. Petersburg, Russian Federation

Sussex University of Sussex, Brighton, UK
SYRTE Systèmes de référence Temps Espace,

Paris, France
TTPW Thermodynamic temperature T of the

triple point of water: TTPW ≈ 273.16 K
TGFC Task Group on Fundamental Con-

stants of the Committee on Data of
the International Science Council
(CODATA)

TR&D Tribotech Research and Development
Company,Moscow,RussianFederation

t Triton (nucleus of tritium T, or 3H)
UBarc Universitat Autònoma de Barcelona,

Barcelona, Spain
UCB University of California at Berkeley,

Berkeley, California, USA
UCI University of California at Irvine,

Irvine, California, USA
UMZ Institut für Physik, JohannesGutenberg-

Universität Mainz, Mainz, Germany
UWash University of Washington, Seattle,

Washington, USA
UWup University of Wuppertal, Wuppertal,

Germany
UZur University of Zurich, Zurich,

Switzerland
u Unified atomic mass unit (also called

the dalton, Da): 1u¼mu¼mð12CÞ=12
uðXÞ Standard uncertainty (i.e., estimated

standard deviation) of quantity or
constant X

urðXÞ Relative standard uncertainty of a quan-
tity or constant X: urðXÞ ¼ uðXÞ=jXj,
X ≠ 0 (also simply ur)

uðX; YÞ Covariance of quantities or constants
X and Y

urðX; YÞ Relative covariance of quantities
or constants X and Y: urðX; YÞ ¼
uðX; YÞ=ðXYÞ

u0 Type of uncertainty in the theory of the
energy levels of hydrogen and deu-
terium: The contribution to the energy
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has correlated uncertainties for states
with the samel and j. See also entryun.

un Type of uncertainty in the theory of
the energy levels of hydrogen and
deuterium: The contribution has
uncorrelated uncertainties. See also
entry u0.

WarsU University of Warsaw, Warszawa,
Poland

Yale Yale University, New Haven,
Connecticut, USA

York York University, Toronto, Canada
α Fine-structure constant: α ¼

e2=4πϵ0ℏc ≈ 1=137
α Alpha particle (nucleus of 4He)

ΔEBðAXnþÞ Energy required to remove n electrons
from a neutral atom

ΔEIðAXiþÞ Electron ionization energies, i ¼ 0 to
n − 1

ΔEMu Ground-state muonium hyperfine
splitting energy

ΔELSðμH; μDÞ Transition energy of Lamb shift in
muonic hydrogen ormuonic deuterium

δH;DðXÞ Additive correction to the theoretical
expression for the energy of a speci-
fied level in hydrogen or deuterium

δthðXÞ Additive correction to a specified
theoretical expression

≐ Symbol used to relate an input datum
to its observational equation

θW Weak mixing angle
ƛC Reduced Compton wavelength: ƛC ¼

ℏ=mec
μ Symbol for either member of the

muon-antimuon pair; when necessary,
μ− or μþ is used to indicate the
negative muon or positive antimuon

μD Muonic deuterium (an atom compris-
ing a deuteron and a muon)

μH Muonic hydrogen (an atom compris-
ing a proton and a muon)

μB Bohr magneton: μB ¼ eℏ=2me

μN Nuclear magneton: μN ¼ eℏ=2mp
μXðYÞ Magnetic moment of particle X in

atom or molecule Y
μX, μ0X Magnetic moment, or shielded mag-

netic moment, of particle X
μ0 Vacuum magnetic permeability: μ0 ¼

4παℏ=e2c ≈ 4π × 10−7 N=A2

ν Degrees of freedom of a particular
least-squares calculation: ν ¼ N −M,
N number of input data,M number of
variables, or adjusted constants

σ Stefan-Boltzmann constant: σ ¼
ðπ2=60Þk4=ℏ3c2

τ Symbol for either member of the tau-
antitau pair; when necessary, τ− or τþ
is used to indicate the negative or
positive tau lepton

χ2 The statistic “chi square”
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thesis (Université Pierre et Marie Curie).

Fleurbaey, H., S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F.
Biraben, F. Nez, M. Abgrall, and J. Guéna, 2018, Phys. Rev. Lett.
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